1
|
Lin YM, Zhang K, Geesala R, Lipson KE, Qiu S, Powell DW, Cohn S, Shi XZ. Mechanical stress-induced connective tissue growth factor plays a critical role in intestinal fibrosis in Crohn's-like colitis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G295-G305. [PMID: 38954823 PMCID: PMC11427090 DOI: 10.1152/ajpgi.00123.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall. We hypothesize that MS induces gene expression of profibrotic mediators such as connective tissue growth factor (CTGF), which may contribute to fibrosis in CD. A rodent model of CD was induced by intracolonic instillation of TNBS to the distal colon. TNBS instillation induced a localized transmural inflammation (site I), with a distended colon segment (site P) proximal to site I. We detected significant fibrosis and collagen content not only in site I but also in site P in CD rats by day 7. CTGF expression increased significantly in sites P and I, but not in the segment distal to the inflammation site. Increased CTGF expression was detected mainly in the smooth muscle cells (SMCs). When rats were fed exclusively with clear liquid diet to prevent mechanical distention in colitis, expression of CTGF in sites P and I was blocked. Direct stretch led to robust expression of CTGF in colonic SMC. Treatment of CD rats with anti-CTGF antibody FG-3149 reduced fibrosis and collagen content in both sites P and I and exhibited consistent trends toward normalizing expression of collagen mRNAs. In conclusion, our studies suggest that mechanical stress, by upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.NEW & NOTEWORTHY We found that CTGF expression increased significantly not only in the inflammation site but in the distended segment proximal to inflammation in a rodent model of CD-like colitis. Release of mechanical distention prevented CTGF expression in CD rats, whereas direct stretch induced CTGF expression. Treatment with anti-CTGF antibody reduced fibrosis and collagen contents in CD rats. Thus, mechanical stress, via upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.
Collapse
Affiliation(s)
- You-Min Lin
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Ke Zhang
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Ramasatyaveni Geesala
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | | | - Suimin Qiu
- Department of Pathology, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Don W Powell
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Steven Cohn
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| |
Collapse
|
2
|
Aitken KJ, Schröder A, Haddad A, Sidler M, Penna F, Fernandez N, Ahmed T, Marino V, Bechbache M, Jiang JX, Tolg C, Bägli DJ. Epigenetic insights to pediatric uropathology: Celebrating the fundamental biology vision of Tony Khoury. J Pediatr Urol 2024; 20 Suppl 1:S43-S57. [PMID: 38944627 DOI: 10.1016/j.jpurol.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Many pediatric urology conditions affect putatively normal tissues or appear too commonly to be based solely on specific DNA mutations. Understanding epigenetic mechanisms in pediatric urology, therefore, has many implications that can impact cell and tissue responses to settings, such as environmental and hormonal influences on urethral development, uropathogenic infections, obstructive stimuli, all of which originate externally or extracellularly. Indeed, the cell's response to external stimuli is often mediated epigenetically. In this commentary, we highlight work on the critical role that epigenetic machinery, such as DNA methyltransferases (DNMTs), Enhancer of Zeste Polycomb Repressive Complex 2 Subunit (EZH2), and others play in regulating gene expression and cellular functions in three urological contexts. DESIGN Animal and cellular constructs were used to model clinical pediatric uropathology. The hypertrophy, trabeculation, and fibrosis of the chronically obstructed bladder was explored using smooth muscle cell models employing disorganised vs. normal extracellular matrix (ECM), as well as a new animal model of chronic obstructive bladder disease (COBD) which retains its pathologic features even after bladder de-obstruction. Cell models from human and murine hypospadias or genital tubercles (GT) were used to illustrate developmental responses and epigenetic dependency of key developmental genes. Finally, using bladder urothelial and organoid culture systems, we examined activity of epigenetic machinery in response to non uropathogenic vs. uropathogenic E.coli (UPEC). DNMT and EZH2 expression and function were interrogated in these model systems. RESULTS Disordered ECM exerted a principal mitogenic and epigenetic role for on bladder smooth muscle both in vitro and in CODB in vivo. Key genes, e.g., BDNF and KCNB2 were under epigenetic regulation in actively evolving obstruction and COBD, though each condition showed distinct epigenetic responses. In models of hypospadias, estrogen strongly dysregulated WNT and Hox expression, which was normalized by epigenetic inhibition. Finally, DNA methylation machinery in the urothelium showed specific activation when challenged by uropathogenic E.coli. Similarly, UPEC induces hypermethylation and downregulation of the growth suppressor p16INK4A. Moreover, host cells exposed to UPEC produced secreted factors inducing epigenetic responses transmissible from one affected cell to another without ongoing bacterial presence. DISCUSSION Microenvironmental influences altered epigenetic activity in the three described urologic contexts. Considering that many obstructed bladders continue to display abnormal architecture and dysfunction despite relief of obstruction similar to after resection of posterior valves or BPH, the epigenetic mechanisms described highlight novel approaches for understanding the underlying smooth muscle myopathy of this crucial clinical problem. Similarly, there is evidence for an epigenetic basis of xenoestrogen on development of hypospadias, and UTI-induced pan-urothelial alteration of epigenetic marks and propensity for subsequent (recurrent) UTI. The impact of mechanical, hormonal, infectious triggers on genitourinary epigenetic machinery activity invite novel avenues for targeting epigenetic modifications associated with these non-cancer diseases in urology. This includes the use of deactivated CRISPR-based technologies for precise epigenome targeting and editing. Overall, we underscore the importance of understanding epigenetic regulation in pediatric urology for the development of innovative therapeutic and management strategies.
Collapse
Affiliation(s)
- K J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada.
| | - Annette Schröder
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Urology and Pediatric Urology of the University Medical Center Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Ahmed Haddad
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frank Penna
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicolas Fernandez
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Marino
- DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada
| | - Matthew Bechbache
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Cornelia Tolg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Darius J Bägli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Liu L, Arévalo-Martínez M, Rippe C, Johansson ME, Holmberg J, Albinsson S, Swärd K. Itga8-Cre-mediated deletion of YAP and TAZ impairs bladder contractility with minimal inflammation and chondrogenic differentiation. Am J Physiol Cell Physiol 2023; 325:C1485-C1501. [PMID: 37927241 DOI: 10.1152/ajpcell.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
A role of Yes1-associated transcriptional regulator (YAP) and WW domain-containing transcription regulator 1 (TAZ) in vascular and gastrointestinal contractility due to control of myocardin (Myocd) expression, which in turn activates contractile genes, has been demonstrated. Whether this transcriptional hierarchy applies to the urinary bladder is unclear. We found that YAP/TAZ are expressed in human detrusor myocytes and therefore exploited the Itga8-CreERT2 model for the deletion of YAP/TAZ. Recombination occurred in detrusor, and YAP/TAZ transcripts were reduced by >75%. Bladder weights were increased (by ≈22%), but histology demonstrated minimal changes in the detrusor, while arteries in the mucosa were inflamed. Real-time quantitative reverse transcription PCR (RT-qPCR) using the detrusor demonstrated reductions of Myocd (-79 ± 18%) and serum response factor (Srf) along with contractile genes. In addition, the cholinergic receptor muscarinic 2 (Chrm2) and Chrm3 were suppressed (-80 ± 23% and -80 ± 10%), whereas minute increases of Il1b and Il6 were seen. Unlike YAP/TAZ-deficient arteries, SRY (sex-determining region Y)-box 9 (Sox9) did not increase, and no chondrogenic differentiation was apparent. Reductions of smooth muscle myosin heavy chain 11 (Myh11), myosin light-chain kinase gene (Mylk), and Chrm3 were seen at the protein level. Beyond restraining the smooth muscle cell (SMC) program of gene expression, YAP/TAZ depletion silenced SMC-specific splicing, including exon 2a of Myocd. Reduced contractile differentiation was associated with weaker contraction in response to myosin phosphatase inhibition (-36%) and muscarinic activation (reduced by 53% at 0.3 µM carbachol). Finally, short-term overexpression of constitutively active YAP in human embryonic kidney 293 (HEK293) cells increased myocardin (greater than eightfold) along with archetypal target genes, but contractile genes were unaffected or reduced. YAP and TAZ thus regulate myocardin expression in the detrusor, and this is important for SMC differentiation and splicing as well as for contractility.NEW & NOTEWORTHY This study addresses the hypothesis that YAP and TAZ have an overarching role in the transcriptional hierarchy in the smooth muscle of the urinary bladder by controlling myocardin expression. Using smooth muscle-specific and inducible deletion of YAP and TAZ in adult mice, we find that YAP and TAZ control myocardin expression, contractile differentiation, smooth muscle-specific splicing, and bladder contractility. These effects are largely independent of inflammation and chondrogenic differentiation.
Collapse
Affiliation(s)
- Li Liu
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | | | - Catarina Rippe
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Holmberg
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sebastian Albinsson
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karl Swärd
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Aitken KJ, Yadav P, Sidler M, Thanabalasingam T, Ahmed T, Aggarwal P, Yip ST, Jeffrey N, Jiang JX, Siebenaller A, Sotiropoulos C, Huang R, Le DMQ, Delgado-Olguin P, Bagli D. Spontaneous urinary bladder regeneration after subtotal cystectomy increases YAP/WWTR1 signaling and downstream BDNF expression: Implications for smooth muscle injury responses. PLoS One 2023; 18:e0287205. [PMID: 37494380 PMCID: PMC10370683 DOI: 10.1371/journal.pone.0287205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/01/2023] [Indexed: 07/28/2023] Open
Abstract
Rodents have the capacity for spontaneous bladder regeneration and bladder smooth muscle cell (BSMC) migration following a subtotal cystectomy (STC). YAP/WWTR1 and BDNF (Brain-derived neurotrophic factor) play crucial roles in development and regeneration. During partial bladder outlet obstruction (PBO), excessive YAP/WWTR1 signaling and BDNF expression increases BSMC hypertrophy and dysfunction. YAP/WWTR1 and expression of BDNF and CYR61 were examined in models of regeneration and wound repair. Live cell microscopy was utilized in an ex vivo model of STC to visualize cell movement and division. In Sprague-Dawley female rats, STC was performed by resection of the bladder dome sparing the trigone, followed by closure of the bladder. Smooth muscle migration and downstream effects on signaling and expression were also examined after scratch wound of BSMC with inhibitors of YAP and BDNF signaling. Sham, PBO and incision (cystotomy) were comparators for the STC model. Scratch wound in vitro increased SMC migration and expression of BDNF, CTGF and CYR61 in a YAP/WWTR1-dependent manner. Inhibition of YAP/WWTR1 and BDNF signaling reduced scratch-induced migration. BDNF and CYR61 expression was elevated during STC and PBO. STC induces discrete genes associated with endogenous de novo cell regeneration downstream of YAP/WWTR1 activation.
Collapse
Affiliation(s)
- Karen J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priyank Yadav
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Division Chief, Paediatric and Neonatal Surgeon, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Thenuka Thanabalasingam
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Prateek Aggarwal
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shing Tai Yip
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nefateri Jeffrey
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aliza Siebenaller
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris Sotiropoulos
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryan Huang
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David Minh Quynh Le
- Human Biology Programme, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguin
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Chen G, Chen S, Di X, He S, Liu Y, Qu R, Luo Y, Liu Y, Yang L. Survivin knockdown alleviates pathological hydrostatic pressure-induced bladder smooth muscle cell dysfunction and BOO-induced bladder remodeling via autophagy. Front Cell Dev Biol 2022; 10:999547. [PMID: 36393846 PMCID: PMC9649584 DOI: 10.3389/fcell.2022.999547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/05/2023] Open
Abstract
Aim: Bladder outlet obstruction (BOO) leads to bladder wall remodeling accompanying the progression from inflammation to fibrosis where pathological hydrostatic pressure (HP)-induced alteration of bladder smooth muscle cells (BSMCs) hypertrophic and excessive extracellular matrix (ECM) deposition play a pivotal role. Recently, we have predicted survivin (BIRC5) as a potential hub gene that might be critical during bladder fibrosis by bioinformatics analyses from rat BOO bladder, but its function during BOO progression remains unknown. Here, we investigated the role of survivin protein on bladder dysfunction of BOO both in vitro and in vivo. Methods: Sprague-Dawley female rats were divided into three groups: control group, BOO group, and BOO followed by the treatment with YM155 group. Bladder morphology and function were evaluated by Masson staining and urodynamic testing. To elucidate the underlying mechanism, hBSMCs were subjected to pathological HP of 200 cm H2O and co-cultured with the presence or absence of survivin siRNA and/or autophagy inhibitor 3-MA. Autophagy was evaluated by the detection of Beclin1 and LC3B-II expression, proliferation was conducted by the EdU analysis and PCNA expression, and fibrosis was assessed by the examination of Col 1 and Fn expression. Results: BOO led to a gradual alteration of hypertrophy and fibrosis of the bladder, and subsequently induced bladder dysfunction accompanied by increased survivin expression, while these histological and function changes were attenuated by the treatment with YM155. HP significantly increased survivin expression, upregulated Col1 and Fn expression, enhanced proliferation, and downregulated autophagy markers, but these changes were partially abolished by survivin siRNA treatment, which was consistent with the results of the BOO rat experiment. In addition, the anti-fibrotic and anti-proliferative effects of the survivin siRNA treatment on hBSMCs were diminished after the inhibition of autophagy by the treatment with 3-MA. Conclusion: In summary, the upregulation of survivin increased cell proliferation and fibrotic protein expression of hBSMC and drove the onset of bladder remodeling through autophagy during BOO. Targeting survivin in pathological hBSMCs could be a promising way to anti-fibrotic therapeutic approach in bladder remodeling secondary to BOO.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Laboratory of Reconstructive Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Shuang Chen
- Laboratory of Reconstructive Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Xingpeng Di
- Laboratory of Reconstructive Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Shengyin He
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yugao Liu
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Rui Qu
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yi Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuebai Liu
- Department of Education and Training, Sichuan Cancer Hospital, Chengdu, China
| | - Luo Yang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Sidler M, Aitken KJ, Jiang JX, Yadav P, Lloyd E, Ibrahim M, Choufani S, Weksberg R, Bägli D. Inhibition of DNA methylation during chronic obstructive bladder disease (COBD) improves function, pathology and expression. Sci Rep 2021; 11:17307. [PMID: 34453065 PMCID: PMC8397724 DOI: 10.1038/s41598-021-96155-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Partial bladder outlet obstruction due to prostate hyperplasia or posterior urethral valves, is a widespread cause of urinary dysfunction, patient discomfort and also responsible for immense health care costs. Even after removal or relief of obstruction, the functional and pathologic aspects of obstruction remain as a chronic obstructive bladder disease (COBD). Epigenetic changes, such as DNA methylation, contribute to the persistent character of many chronic diseases, and may be altered in COBD. We tested whether candidate genes and pathways and the pathophysiology of COBD were affected by a hypomethylating agent, decitabine (DAC). COBD was created in female Sprague-Dawley rats by surgical ligation of the urethra for 6 weeks, followed by removal of the suture. Sham ligations were performed by passing the suture behind the urethra. After removal of the obstruction or sham removal, animals were randomized to DAC treatment (1 mg/kg/3-times/week intraperitoneally) or vehicle (normal saline). Bladder function was non-invasively tested using metabolic cages, both one day prior to de-obstruction at 6 weeks and prior to sacrifice at 10 weeks. Residual volume and bladder mass were measured for each bladder. Bladders were examined by immunostaining as well as qPCR. The effects of DNA methyltransferase (DNMT)-3A knockout or overexpression on smooth muscle cell (SMC) function and phenotype were also examined in bladder SMC and ex vivo culture. Residual volumes of the DAC treated group were not significantly different from the NS group. Compared to COBD NS, COBD DAC treatment helped preserve micturition volume with a significant recovery of the voiding efficiency (ratio of the maximum voided volume/maximum bladder capacity) by one third (Fig. 1, p > 0.05). Brain-derived neurotrophic factor (BDNF) variants 1 and 5 were upregulated by COBD and significantly reduced by DAC treatment. Deposition of collagen in the COBD bladder was reduced by DAC, but gross hypertrophy remained. In bladder SMC, DNMT3A overexpression led to a loss of contractile function and phenotype. In bladders, persistently altered by COBD, inhibition of DNA-methylation enhances functional recovery, unlike treatment during partial obstruction, which exacerbates obstructive pathology. The underlying mechanisms may relate to the gene expression changes in BDNF and their effects on signaling in the bladder.
Collapse
Affiliation(s)
- Martin Sidler
- Paediatric and Neonatal Surgery, Klinikum Stuttgart, Stuttgart, Baden-Württemberg, Germany
| | - K J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada.
| | - Jia-Xin Jiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Priyank Yadav
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, New PMSSY Rd, Raibareli Rd, Lucknow, Uttar Pradesh, 226014, India
| | - Erin Lloyd
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Malak Ibrahim
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G0A4, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darius Bägli
- Urology Division, Department of Surgery, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| |
Collapse
|
7
|
Li C, Wang S, Yang C. Long non-coding RNA DLX6-AS1 regulates neuroblastoma progression by targeting YAP1 via miR-497-5p. Life Sci 2020; 252:117657. [PMID: 32289431 DOI: 10.1016/j.lfs.2020.117657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
AIMS The lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) has been reported to be an oncogenic lncRNA in diverse malignant cancers; however, whether it has oncogenic role in neuroblastoma(NB) remain largely unknown. This study explored the expression status, function and potential mechanism of DLX6-AS1 in NB. MAIN METHOD In the current study, a total of 70 human NB tissues and matched adjacent non-tumor tissues were collected. Quantitative PCR (qPCR) was performed to study the expression differences of DLX6-AS1 in tissues and NB cell lines. Proliferation, migration, invasion and EMT status of transfected NB cells were evaluated by WST-1 assay, colony formation unit assay, Transwell assay and qPCR, respectively. The interaction between DLX6-AS1 and its potential targets was confirmed by luciferase reporter assay. Xenograft models were established to evaluate tumor proliferation in vivo. KEY FINDING We found that the expression of DLX6-AS1 was significantly increased in both NB tissues and cell lines, and elevated DLX6AS1 expression was positively correlated with advanced stage and poor survival. Proliferation rate, migration and invasion ability, as well as EMT process of NB cells was inhibited after DLX6-AS1 knockdown, meanwhile, the tumor growth in vivo was impaired after DLX6-AS1 inhibition. Further analysis showed that DLX6-AS1 regulates the expression of YAP1 by sponging miR-497-5p. DLX6-AS1 directly interacts with miR-497-5p and reduces the binding of miR-497-5p to YAP1 3'UTR, thus inhibiting the degradation of YAP1 by miR-497-5p. SIGNIFICANCE This work demonstrates that DLX6-AS1 partially enhances the proliferation, migration and invasion abilities of NB cells through the miR-497-5p/YAP1 pathway, DLX6-AS1 might act as a promising therapeutic target for NB.
Collapse
Affiliation(s)
- Changchun Li
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shan Wang
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Chao Yang
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
8
|
Schröder A, Aitken KJ, Jiang JX, Sidler M, Tölg C, Siebenaller A, Jeffrey N, Kirwan T, Leslie B, Wu C, Weksberg R, Delgado-Olguin P, Bägli DJ. Persistent myopathy despite release of partial obstruction: in vivo reversal of dysfunction and transcriptional responses using rapamycin. FASEB J 2020; 34:3594-3615. [PMID: 31984552 DOI: 10.1096/fj.201900547rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Current and potential medical therapy for obstruction-induced myopathic bladder dysfunction (from benign prostatic hyperplasia or posterior urethral valves) focuses on symptoms. The persistent tissue pathology and dysfunction after release of obstruction is often deemed irreversible without any systematic therapeutic approaches. As rapamycin can attenuate bladder smooth muscle hypertrophy and dysfunction during the genesis of partial obstruction in vivo, we tested whether rapamycin could improve persistent function after release of obstruction (de-obstruction or REL). Female Sprague-Dawley rat bladders were partially obstructed (PBO) by suturing around both the urethra and a para-urethral steel rod, then removing the rod. One day prior to release of obstruction (preREL), voiding parameters and residual urine volume of preREL+future rapa, preREL+future veh groups were recorded. Release of obstruction (REL) was performed by suture removal following 6 weeks of PBO. For 4 more weeks after the de-obstruction, REL animals were randomized to rapamycin (REL+rapa) or vehicle (REL+veh). PBO for 6 weeks were used as positive controls. In shams, the urethra was exposed, but no suture tied. Voiding parameters and residual urine volume were measured prior to sacrifice of sham and REL+veh or REL+rapa, and PBO. Rapamycin efficacy was tested by pair-wise comparison of changes in individual voiding data from preREL+future veh or preREL+future rapa versus REL+veh or REL+rapa, respectively, as well as by comparisons of REL+veh to REL+rapa groups. Bladders were weighed and processed for a high-throughput QPCR array, and histopathology. Bladder/body mass ratios with PBO increased significantly and remained higher in the release phase in REL+veh animals. REL+rapa versus REL+veh improved residual volumes and micturition fractions toward sham levels. Three genes encoding extracellular proteins, BMP2, SOD3, and IGFBP7, correlated with functional improvement by Pearson's correlations. The promoters of these genes showed enrichment for several motifs including circadian E-boxes. While obstruction and REL augmented CLOCK and NPAS2 expression above sham levels, rapamycin treatment during release significantly blocked their expression. This experimental design of pharmaco-intervention during the de-obstruction phase revealed a novel pathway dysregulated during the clinically relevant treatment phase of obstructive bladder myopathy.
Collapse
Affiliation(s)
- Annette Schröder
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Karen J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Sidler
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cornelia Tölg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Aliza Siebenaller
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Nefateri Jeffrey
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tyler Kirwan
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Bruno Leslie
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rosanna Weksberg
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Darius J Bägli
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|