1
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Loeser RF, Collins JA, Diekman BO, Carlson CS. Reply. Arthritis Rheumatol 2021; 72:2162-2163. [PMID: 33459503 DOI: 10.1002/art.41431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Richard F Loeser
- University of North Carolina School of Medicine, Chapel Hill, NC
| | - John A Collins
- University of North Carolina School of Medicine, Chapel Hill, NC
| | - Brian O Diekman
- North Carolina State University, Raleigh, NC and University of North Carolina School of Medicine, Chapel Hill, NC
| | - Cathy S Carlson
- University of Minnesota College of Veterinary Medicine, St. Paul, MN
| |
Collapse
|
3
|
Xu WD, Huang AF. JNK Pathway as a Target for Osteoarthritis: Comment on the Article by Loeser et al. Arthritis Rheumatol 2020; 72:2162. [PMID: 32869546 DOI: 10.1002/art.41432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 11/09/2022]
Affiliation(s)
| | - An-Fang Huang
- Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
5
|
Loeser RF, Kelley KL, Armstrong A, Collins JA, Diekman BO, Carlson CS. Deletion of JNK Enhances Senescence in Joint Tissues and Increases the Severity of Age-Related Osteoarthritis in Mice. Arthritis Rheumatol 2020; 72:1679-1688. [PMID: 32418287 DOI: 10.1002/art.41312] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the role of JNK signaling in the development of osteoarthritis (OA) induced by joint injury or aging in mice. METHODS In the joint injury model, 12-week-old wild-type control, JNK1-/- , JNK2-/- , and JNK1fl/fl JNK2-/- aggecan-CreERT 2 double-knockout mice were subjected to destabilization of the medial meniscus (DMM) (n = 15 mice per group) or sham surgery (n = 9-10 mice per group), and OA was evaluated 8 weeks later. In the aging experiment, wild-type control, JNK1-/- , and JNK2-/- mice (n = 15 per group) were evaluated at 18 months of age. Mouse knee joints were evaluated by scoring articular cartilage structure, toluidine blue staining, osteophytes, and synovial hyperplasia, by histomorphometric analysis, and by immunostaining for the senescence marker p16INK 4a . Production of matrix metalloproteinase 13 (MMP-13) in cartilage explants in response to fibronectin fragments was measured by enzyme-linked immunosorbent assay. RESULTS There were no differences after DMM surgery between the wild-type and the JNK-knockout mouse groups in articular cartilage structure, toluidine blue, or osteophyte scores or in MMP-13 production in explants. All 3 knockout mouse groups had increased subchondral bone thickness and area of cartilage necrosis compared to wild-type mice. Aged JNK-knockout mice had significantly worse articular cartilage structure scores compared to the aged wild-type control mice (mean ± SD 52 ± 24 in JNK1-/- mice and 60 ± 25 in JNK2-/- mice versus 32 ± 18 in controls; P = 0.02 and P = 0.004, respectively). JNK1-/- mice also had higher osteophyte scores. Deletion of JNK resulted in increased expression of p16INK 4a in the synovium and cartilage in older mice. CONCLUSION JNK1 and JNK2 are not required for the development of OA in the mouse DMM model. Deletion of JNK1 or JNK2 is associated with more severe age-related OA and increased cell senescence, suggesting that JNK may act as a negative regulator of senescence in the joint.
Collapse
Affiliation(s)
| | | | | | - John A Collins
- University of North Carolina School of Medicine, Chapel Hill
| | - Brian O Diekman
- University of North Carolina School of Medicine, Chapel Hill, and North Carolina State University, Raleigh
| | - Cathy S Carlson
- University of Minnesota College of Veterinary Medicine, St. Paul
| |
Collapse
|
6
|
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2020; 250:302-317. [PMID: 32564440 DOI: 10.1002/dvdy.217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell-based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench-side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human-induced pluripotent stem cells into notochord-like and nucleus pulposus-like cells for use in novel cell-based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post-natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell-based therapies to bring emerging subphenotypes into consideration.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Tessier S, Doolittle AC, Sao K, Rotty JD, Bear JE, Ulici V, Loeser RF, Shapiro IM, Diekman BO, Risbud MV. Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation. JCI Insight 2020; 5:131382. [PMID: 31961823 DOI: 10.1172/jci.insight.131382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/15/2020] [Indexed: 01/01/2023] Open
Abstract
Extracellular matrix and osmolarity influence the development and homeostasis of skeletal tissues through Rho GTPase-mediated alteration of the actin cytoskeleton. This study investigated whether the actin-branching Arp2/3 complex, a downstream effector of the Rho GTPases Cdc42 and Rac1, plays a critical role in maintaining the health of matrix-rich and osmotically loaded intervertebral discs and cartilage. Mice with constitutive intervertebral disc- and cartilage-specific deletion of the critical Arp2/3 subunit Arpc2 (Col2-Cre; Arpc2fl/fl) developed chondrodysplasia and spinal defects. Since these mice did not survive to adulthood, we generated mice with inducible Arpc2 deletion in disc and cartilage (Acan-CreERT2; Arpc2fl/fl). Inactivation of Arp2/3 at skeletal maturity resulted in growth plate closure, loss of proteoglycan content in articular cartilage, and degenerative changes in the intervertebral disc at 1 year of age. Chondrocytes with Arpc2 deletion showed compromised cell spreading on both collagen and fibronectin. Pharmacological inhibition of Cdc42 and Arp2/3 prevented the osmoadaptive transcription factor TonEBP/NFAT5 from recruiting cofactors in response to a hyperosmolarity challenge. Together, these findings suggest that Arp2/3 plays a critical role in cartilaginous tissues through the regulation of cell-extracellular matrix interactions and modulation of TonEBP-mediated osmoadaptation.
Collapse
Affiliation(s)
- Steven Tessier
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College
| | - Alexandra C Doolittle
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kimheak Sao
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jeremy D Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Cell Biology and Physiology.,UNC Lineberger Comprehensive Cancer Center
| | - James E Bear
- Department of Cell Biology and Physiology.,UNC Lineberger Comprehensive Cancer Center
| | - Veronica Ulici
- Thurston Arthritis Research Center, and.,Division of Rheumatology, Allergy, and Immunology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard F Loeser
- Thurston Arthritis Research Center, and.,Division of Rheumatology, Allergy, and Immunology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian O Diekman
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Saiyin W, Li L, Zhang H, Lu Y, Qin C. Inactivation of FAM20B causes cell fate changes in annulus fibrosus of mouse intervertebral disc and disc defects via the alterations of TGF-β and MAPK signaling pathways. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165555. [PMID: 31513834 PMCID: PMC7194007 DOI: 10.1016/j.bbadis.2019.165555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 01/30/2023]
Abstract
Intervertebral disc (IVD) disorder is often caused by the defect of annulus fibrosus (AF), especially that of the outer AF. Studies about the mechanisms governing the development of the outer AF are needed for a better understanding of pathogenesis of IVD defects. Glycosaminoglycans (GAGs) are essential components of extracellular matrix (ECM) in AF. FAM20B is a newly identified xylose kinase that catalyzes the biosynthesis of GAGs. In this study, we created Fam20B conditional knockout (cKO) mice in which FAM20B was inactivated in type I collagen-expressing cells, the main type of cells in the outer AF of IVD. The cKO mice showed severe spine deformity and remarkable IVD defects associated with AF malformation. The AF of cKO mice had a lower level of chondroitin sulfate and heparan sulfate, and the outer AF cells lost their normal fibroblast-like morphology and acquired chondrocyte phenotypes, expressing a higher level of Sox 9 and type II collagen along with a reduced level of type I collagen. The level of phospho-Smad 2 and phospho-Smad 3, and that of scleraxis, a downstream target molecule of canonical TGF-β signaling pathway were significantly lower in the AF of cKO mice. The AF in cKO mice also manifested altered levels in the molecules associated with the activations of MAPK pathway; the changes included the increase of phospho-P38 and phospho-ERK and a decrease of phospho-JNK. These results indicate that FAM20B plays an essential role in the development of AF by regulating the TGF-β signaling and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wuliji Saiyin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Lili Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|