1
|
Ghanem S, Keren-Politansky A, Kaplan V, Crispel Y, Nadir Y. Tissue factor-heparanase complex: intracellular nonhemostatic effects. Res Pract Thromb Haemost 2023; 7:102179. [PMID: 37767062 PMCID: PMC10520574 DOI: 10.1016/j.rpth.2023.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Background Heparanase, known to be involved in angiogenesis, cancer progression, and inflammation, was shown to form a complex with tissue factor (TF) via its procoagulant domain and to enhance the hemostatic system. Objectives To reveal a potential role of heparanase procoagulant domain in nonhemostatic effects. Methods Effects of peptides 16 and 16AC derived from the heparanase procoagulant domain, discovered by our group, were studied using the XTT proliferation assay, western blot analysis, and immunostaining in vitro and a mouse wound-healing model. Results Procoagulant peptides induced increased proliferation, release of heparanase, and upregulation of heparanase, TF, tissue factor pathway inhibitor (TFPI), and TFPI-2 in U87, T47D, and MCF-7 tumor cell lines and in endothelial cells. These results were reversed by a peptide derived from TFPI-2 that inhibited the heparanse procoagulant domain-TF complex. Thrombin had a similar effect on tumor cell proliferation and heparanase release, although the impact of thrombin on cell proliferation was mediated by the heparanase procoagulant domain. A mouse model of full-thickness skin incision exhibited higher levels of heparanase, TF, TFPI, and TFPI-2 in the healing skin, mainly in the blood vessel wall and lumen in animals injected with the procoagulant peptides compared to controls. The cells transfected to overexpress full-length TF or TF devoid of the cytoplasmic domain demonstrated that the procoagulant domain conveyed intracellular signaling via TF. Conclusion Heparanase procoagulant domain induces nonhemostatic effects via TF. The finding that TF serves as a receptor to heparanase supports the close direct relation between the hemostatic system and cancer progression.
Collapse
Affiliation(s)
- Shorook Ghanem
- Thrombosis and Hemostasis Unit, The Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Anat Keren-Politansky
- Hematology Laboratory, The Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Victoria Kaplan
- Thrombosis and Hemostasis Unit, The Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Yonatan Crispel
- Thrombosis and Hemostasis Unit, The Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Yona Nadir
- Thrombosis and Hemostasis Unit, The Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| |
Collapse
|
2
|
Santos RP, Tovar AM, Oliveira MR, Piquet AA, Capillé NV, Oliveira SN, Correia AH, Farias JN, Vilanova E, Mourão PA. Pharmacokinetic, Hemostatic, and Anticancer Properties of a Low-Anticoagulant Bovine Heparin. TH OPEN 2022; 6:e114-e123. [DOI: 10.1055/s-0042-1745743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/20/2022] [Indexed: 10/18/2022] Open
Abstract
AbstractHeparin is a centennial anticoagulant drug broadly employed for treatment and prophylaxis of thromboembolic conditions. Although unfractionated heparin (UFH) has already been shown to have remarkable pharmacological potential for treating a variety of diseases unrelated with thromboembolism, including cancer, atherosclerosis, inflammation, and virus infections, its high anticoagulant potency makes the doses necessary to exert non-hemostatic effects unsafe due to an elevated bleeding risk. Our group recently developed a new low-anticoagulant bovine heparin (LABH) bearing the same disaccharide building blocks of the UFH gold standard sourced from porcine mucosa (HPI) but with anticoagulant potency approximately 85% lower (approximately 25 and 180 Heparin International Units [IU]/mg). In the present work, we investigated the pharmacokinetics profile, bleeding potential, and anticancer properties of LABH administered subcutaneous into mice. LABH showed pharmacokinetics profile similar to HPI but different from the low-molecular weight heparin (LMWH) enoxaparin and diminished bleeding potential, even at high doses. Subcutaneous treatment with LABH delays the early progression of Lewis lung carcinoma, improves survival, and brings beneficial health outcomes to the mice, without the advent of adverse effects (hemorrhage/mortality) seen in the animals treated with HPI. These results demonstrate that LABH is a promising candidate for prospecting new therapeutic uses for UFH.
Collapse
Affiliation(s)
- Roberto P. Santos
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana M.F. Tovar
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos R. Oliveira
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana A. Piquet
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nina V. Capillé
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephan N.M.C.G. Oliveira
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana H. Correia
- Hospital Universitário Clementino Fraga Filho, Serviço de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Brazil
| | - José N. Farias
- Hospital Universitário Clementino Fraga Filho, Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Brazil
| | - Eduardo Vilanova
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A.S. Mourão
- Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Santos R, Tovar AM, Oliveira M, Piquet AA, Capille NVM, Oliveira SNM, Correia A, Farias J, Vilanova E, Mourão PA. Pharmacokinetic, hemostatic and anticancer properties of a low-anticoagulant bovine heparin. TH OPEN 2022. [PMID: 35707626 PMCID: PMC9135479 DOI: 10.1055/a-1750-1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heparin is a centennial anticoagulant drug broadly employed for treatment and prophylaxis of thromboembolic conditions. Although unfractionated heparin (UFH) has already been shown to have remarkable pharmacological potential for treating a variety of diseases unrelated with thromboembolism, including cancer, atherosclerosis, inflammation, and virus infections, its high anticoagulant potency makes the doses necessary to exert non-hemostatic effects unsafe due to an elevated bleeding risk. Our group recently developed a new low-anticoagulant bovine heparin (LABH) bearing the same disaccharide building blocks of the UFH gold standard sourced from porcine mucosa (HPI) but with anticoagulant potency approximately 85% lower (approximately 25 and 180 Heparin International Units [IU]/mg). In the present work, we investigated the pharmacokinetics profile, bleeding potential, and anticancer properties of LABH administered subcutaneous into mice. LABH showed pharmacokinetics profile similar to HPI but different from the low-molecular weight heparin (LMWH) enoxaparin and diminished bleeding potential, even at high doses. Subcutaneous treatment with LABH delays the early progression of Lewis lung carcinoma, improves survival, and brings beneficial health outcomes to the mice, without the advent of adverse effects (hemorrhage/mortality) seen in the animals treated with HPI. These results demonstrate that LABH is a promising candidate for prospecting new therapeutic uses for UFH.
Collapse
Affiliation(s)
- Roberto Santos
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana M.F. Tovar
- Instituto de Bioquimica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana A. Piquet
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nina VM Capille
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Correia
- HUCFF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Farias
- HUCFF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Vilanova
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A.S. Mourão
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Abstract
Heparanase, the only mammalian enzyme known to degrade heparan sulfate chains, affects the hemostatic system through several mechanisms. Along with the degrading effect, heparanase engenders release of syndecan-1 from the cell surface and directly enhances the activity of the blood coagulation initiator, tissue factor, in the coagulation system. Upregulation of tissue factor and release of tissue factor pathway inhibitor from the cell surface contribute to the prothrombotic effect. Tissue factor pathway inhibitor and the strongest physiological anticoagulant antithrombin are attached to the endothelial cell surface by heparan sulfate. Hence, degradation of heparan sulfate induces further release of these two natural anticoagulants from endothelial cells. Elevated heparanase procoagulant activity and heparan sulfate chain levels in plasma, demonstrated in cancer, pregnancy, oral contraceptive use, and aging, could suggest a potential mechanism for increased risk of thrombosis in these clinical settings. In contrast to the blood circulation, accumulation of heparan sulfate chains in transudate and exudate pleural effusions induces a local anticoagulant milieu. The anticoagulant effect of heparan sulfate chains in other closed spaces such as peritoneal or subdural cavities should be further investigated.
Collapse
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
5
|
Ghoti H, Ackerman S, Rivella S, Casu C, Nadir Y. Heparanase Level and Procoagulant Activity Are Increased in Thalassemia and Attenuated by Janus Kinase 2 Inhibition. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2146-2154. [PMID: 32745462 DOI: 10.1016/j.ajpath.2020.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/30/2023]
Abstract
Patients with thalassemia exhibit an increased risk of thrombotic events that is augmented after splenectomy. Heparanase protein enhances cancer progression, angiogenesis, and inflammation; it also activates the coagulation system through direct interaction with tissue factor (TF). Additionally, erythropoietin, which is elevated in anemic patients, up-regulates heparanase expression via the Janus kinase 2 (JAK-2) pathway. This study aimed was to explore the heparanase profile in thalassemia. Coagulation factors were analyzed via immunostaining, enzyme-linked immunosorbent assay, and heparanase procoagulant activity assay. In spleen specimens of thalassemia major patients, a higher level of heparanase staining was observed compared with control spleens resected after trauma (P < 0.001). Higher heparanase levels, heparanase and TF procoagulant activity, and erythropoietin levels were found in the plasma of 67 thalassemia major patients compared with 29 control subjects. No difference was found in pediatric patients (23 of 67) compared with adults or splenectomized versus nonsplenectomized patients. Higher levels of heparanase, TF, TF pathway inhibitor, and TF pathway inhibitor-2 were observed in liver, spleen, heart, and kidney tissues of thalassemia intermedia mice (Hbbth3/+). These protein levels significantly reduced when mice were treated with the JAK-2 inhibitor ruxolitinib (P < 0.0001). In summary, heparanase levels are elevated in thalassemia, which may contribute to thrombotic phenomena in these patients. Inhibition of heparanase or the JAK-2 pathway may reduce thrombotic risk in thalassemia.
Collapse
Affiliation(s)
- Hussam Ghoti
- European Center for Cancer and Cell Therapy (ECCT), Nicosia, Cyprus
| | - Shanny Ackerman
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania
| | - Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|