1
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
2
|
Sun P, Cui M, Jing J, Kong F, Wang S, Tang L, Leng J, Chen K. Deciphering the molecular and cellular atlas of immune cells in septic patients with different bacterial infections. J Transl Med 2023; 21:777. [PMID: 37919720 PMCID: PMC10621118 DOI: 10.1186/s12967-023-04631-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by abnormal immune responses to various, predominantly bacterial, infections. Different bacterial infections lead to substantial variation in disease manifestation and therapeutic strategies. However, the underlying cellular heterogeneity and mechanisms involved remain poorly understood. METHODS Multiple bulk transcriptome datasets from septic patients with 12 types of bacterial infections were integrated to identify signature genes for each infection. Signature genes were mapped onto an integrated large single-cell RNA (scRNA) dataset from septic patients, to identify subsets of cells associated with different sepsis types, and multiple omics datasets were combined to reveal the underlying molecular mechanisms. In addition, an scRNA dataset and spatial transcriptome data were used to identify signaling pathways in sepsis-related cells. Finally, molecular screening, optimization, and de novo design were conducted to identify potential targeted drugs and compounds. RESULTS We elucidated the cellular heterogeneity among septic patients with different bacterial infections. In Escherichia coli (E. coli) sepsis, 19 signature genes involved in epigenetic regulation and metabolism were identified, of which DRAM1 was demonstrated to promote autophagy and glycolysis in response to E. coli infection. DRAM1 upregulation was confirmed in an independent sepsis cohort. Further, we showed that DRAM1 could maintain survival of a pro-inflammatory monocyte subset, C10_ULK1, which induces systemic inflammation by interacting with other cell subsets via resistin and integrin signaling pathways in blood and kidney tissue, respectively. Finally, retapamulin was identified and optimized as a potential drug for treatment of E. coli sepsis targeting the signature gene, DRAM1, and inhibiting E. coli protein synthesis. Several other targeted drugs were also identified in other types of sepsis, including nystatin targeting C1QA in Neisseria sepsis and dalfopristin targeting CTSD in Streptococcus viridans sepsis. CONCLUSION Our study provides a comprehensive overview of the cellular heterogeneity and underlying mechanisms in septic patients with various bacterial infections, providing insights to inform development of stratified targeted therapies for sepsis.
Collapse
Affiliation(s)
- Ping Sun
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Mintian Cui
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Jiongjie Jing
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Fanyu Kong
- Department of Internal Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shixi Wang
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Lunxian Tang
- Department of Internal Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Junling Leng
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Ben-Eltriki M, Gayle EJ, Walker N, Deb S. Pharmacological Significance of Heme Oxygenase 1 in Prostate Cancer. Curr Issues Mol Biol 2023; 45:4301-4316. [PMID: 37232742 DOI: 10.3390/cimb45050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1) is a detoxifying antioxidant microsomal enzyme that regulates inflammation, apoptosis, cell proliferation, and angiogenesis in prostate cancer (PCa). This makes HO-1 a promising target for therapeutic prevention and treatment due to its anti-inflammatory properties and ability to control redox homeostasis. Clinical evidence highlights the possible correlation between HO-1 expression and PCa growth, aggressiveness, metastasized tumors, resistance to therapy, and poor clinical outcomes. Interestingly, studies have reported anticancer benefits mediated by both HO-1 induction and inhibition in PCa models. Contrasting evidence exists on the role of HO-1 in PCa progression and possible treatment targets. Herein, we provide an overview of available evidence on the clinical significance of HO-1 signaling in PCa. It appears that the beneficial effects of HO-1 induction or inhibition are dependent on whether it is a normal versus malignant cell as well as the intensity (major vs. minor) of the increase in HO-1 enzymatic activity. The current literature evidence indicates that HO-1 has dual effects in PCa. The amount of cellular iron and reactive oxygen species (ROS) can determine the role of HO-1 in PCa. A major increase in ROS enforces HO-1 to a protective role. HO-1 overexpression may provide cryoprotection to normal cells against oxidative stress via suppressing the expression of proinflammatory genes, and thus offer therapeutic prevention. In contrast, a moderate increase in ROS can lead to the perpetrator role of HO-1, which is associated with PCa progression and metastasis. HO-1 inhibition by xenobiotics in DNA-damaged cells tilts the balance to promote apoptosis and inhibit PCa proliferation and metastasis. Overall, the totality of the evidence revealed that HO-1 may play a dual role in the therapeutic prevention and treatment of PCa.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Department of Pharmacology and Therapeutics, Clinical Pharmacology Lab, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Noah Walker
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
4
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
5
|
Cascardo F, Anselmino N, Páez A, Labanca E, Sanchis P, Antico-Arciuch V, Navone N, Gueron G, Vázquez E, Cotignola J. HO-1 Modulates Aerobic Glycolysis through LDH in Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:966. [PMID: 34208670 PMCID: PMC8235201 DOI: 10.3390/antiox10060966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.
Collapse
Affiliation(s)
- Florencia Cascardo
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nicolás Anselmino
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Alejandra Páez
- Unidad de Transferencia Genética, Instituto de Oncología “Dr. Angel H. Roffo”, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1417DTB, Argentina;
| | - Estefanía Labanca
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Pablo Sanchis
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Valeria Antico-Arciuch
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Elba Vázquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Javier Cotignola
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
6
|
Nakae R, Matsuzaki S, Serada S, Matsuo K, Shiomi M, Sato K, Nagase Y, Matsuzaki S, Nakagawa S, Hiramatsu K, Okazawa A, Kimura T, Egawa-Takata T, Kobayashi E, Ueda Y, Yoshino K, Naka T, Kimura T. CD70 antibody-drug conjugate as a potential therapeutic agent for uterine leiomyosarcoma. Am J Obstet Gynecol 2021; 224:197.e1-197.e23. [PMID: 32822640 DOI: 10.1016/j.ajog.2020.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Uterine leiomyosarcoma is a rare and aggressive gynecologic malignancy originating in the myometrium of the uterine corpus that tends to recur even after complete surgical excision. Current therapeutic agents have only modest effects on uterine leiomyosarcoma. Although antibodies and antibody-drug conjugates have been recognized as useful targeted therapies for other cancers, no study has yet evaluated the effects of this approach on uterine leiomyosarcoma. OBJECTIVE This study aimed to examine the activity of tumoral CD70 in uterine leiomyosarcoma and assess the antitumor activity of CD70-antibody-drug conjugate treatment in uterine leiomyosarcoma. STUDY DESIGN Target membrane proteins were screened by profiling and comparing membrane protein expression in 3 uterine leiomyosarcoma cell lines (SK-UT-1, SK-LMS-1, and SKN) and normal uterine myometrium cells using the isobaric tags for relative and absolute quantitation labeling method. Western blotting, fluorescence-activated cell sorting analyses, and immunohistochemistry were used to examine CD70 expression in the membrane proteins in uterine leiomyosarcoma cell lines and clinical samples. We developed an antibody-drug conjugate with a monoclonal antibody of the target membrane protein linked to monomethyl auristatin F and investigated its antitumor effects against uterine leiomyosarcoma (in vitro, in vivo, and in patient-derived xenograft models). RESULTS CD70 was identified as a specific antigen highly expressed in uterine leiomyosarcoma cell lines. Of the 3 uterine leiomyosarcoma cell lines, CD70 expression was confirmed in SK-LMS-1 cells by western blotting and fluorescence-activated cell sorting analysis. CD70 overexpression was observed in 19 of 21 (90.5%) tumor specimens from women with uterine leiomyosarcoma. To generate CD70-antibody-drug conjugate, anti-CD70 monoclonal antibody was conjugated with a novel derivative of monomethyl auristatin F. CD70-antibody-drug conjugate showed significant antitumor effects on SK-LMS-1 cells (half maximal inhibitory concentration, 0.120 nM) and no antitumor effects on CD70-negative uterine leiomyosarcoma cells. CD70-antibody-drug conjugate significantly inhibited tumor growth in the SK-LMS-1 xenograft mouse model (tumor volume, 129.8 vs 285.5 mm3; relative reduction, 54.5%; P<.001) and patient-derived xenograft mouse model (tumor volume, 128.1 vs 837.7 mm3; relative reduction, 84.7%; P<.001). CONCLUSION Uterine leiomyosarcoma tumors highly express CD70 and targeted therapy with CD70-antibody-drug conjugate may have a potential therapeutic implication in the treatment of uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Ruriko Nakae
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Department of Obstetrics and Gynecology, Sumitomo Hospital, Osaka, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA.
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Mayu Shiomi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kazuaki Sato
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikazu Nagase
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Satoko Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA; Department of Obstetrics and Gynecology, Otemae Hospital, Osaka, Japan
| | - Satoshi Nakagawa
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kosuke Hiramatsu
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Akiko Okazawa
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Toshihiro Kimura
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Tomomi Egawa-Takata
- Department of Obstetrics and Gynecology, Osaka Police Hospital, Osaka, Japan; Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan; Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| |
Collapse
|