1
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
2
|
Sha Y, Pan M, Chen Y, Qiao L, Zhou H, Liu D, Zhang W, Wang K, Huang L, Tang N, Qiu J, Huang A, Xia J. PLEKHG5 is stabilized by HDAC2-related deacetylation and confers sorafenib resistance in hepatocellular carcinoma. Cell Death Discov 2023; 9:176. [PMID: 37248230 DOI: 10.1038/s41420-023-01469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Sorafenib is the first FDA-approved first-line targeted drug for advanced HCC. However, resistance to sorafenib is frequently observed in clinical practice, and the molecular mechanism remains largely unknown. Here, we found that PLEKHG5 (pleckstrin homology and RhoGEF domain containing G5), a RhoGEF, was highly upregulated in sorafenib-resistant cells. PLEKHG5 overexpression activated Rac1/AKT/NF-κB signaling and reduced sensitivity to sorafenib in HCC cells, while knockdown of PLEKHG5 increased sorafenib sensitivity. The increased PLEKHG5 was related to its acetylation level and protein stability. Histone deacetylase 2 (HDAC2) was found to directly interact with PLEKHG5 to deacetylate its lysine sites within the PH domain and consequently maintain its stability. Moreover, knockout of HDAC2 (HDAC2 KO) or selective HDAC2 inhibition reduced PLEKHG5 protein levels and thereby enhanced the sensitivity of HCC to sorafenib in vitro and in vivo, while overexpression of PLEKHG5 in HDAC2 KO cells reduced the sensitivity to sorafenib. Our work showed a novel mechanism: HDAC2-mediated PLEKHG5 posttranslational modification maintains sorafenib resistance. This is a proof-of-concept study on targeting HDAC2 and PLEKHG5 in sorafenib-treated HCC patients as a new pharmaceutical intervention for advanced HCC.
Collapse
Affiliation(s)
- Yu Sha
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Mingang Pan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yunmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Liangjun Qiao
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hengyu Zhou
- College of Nursing, Chongqing Medical University, Chongqing, 400016, China
| | - Dina Liu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Interaction kinetics between p115-RhoGEF and Gα 13 are determined by unique molecular interactions affecting agonist sensitivity. Commun Biol 2022; 5:1287. [PMID: 36434027 PMCID: PMC9700851 DOI: 10.1038/s42003-022-04224-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
The three RH-RhoGEFs (Guanine nucleotide exchange factors) p115-RhoGEF, LARG (leukemia-associated RhoGEF) and PDZ-RhoGEF link G-protein coupled receptors (GPCRs) with RhoA signaling through activation of Gα12/13. In order to find functional differences in signaling between the different RH-RhoGEFs we examined their interaction with Gα13 in high spatial and temporal resolution, utilizing a FRET-based single cell assay. We found that p115-RhoGEF interacts significantly shorter with Gα13 than LARG and PDZ-RhoGEF, while narrowing the structural basis for these differences down to a single amino acid in the rgRGS domain of p115-RhoGEF. The mutation of this amino acid led to an increased interaction time with Gα13 and an enhanced agonist sensitivity, comparable to LARG, while mutating the corresponding amino acid in Gα13 the same effect could be achieved. While the rgRGS domains of RH-RhoGEFs showed GAP (GTPase-activating protein) activity towards Gα13 in vitro, our approach suggests higher GAP activity of p115-RhoGEF in intact cells.
Collapse
|
4
|
Abstract
The Ras homologous (Rho) protein family of GTPases (RhoA, RhoB and RhoC) are the members of the Ras superfamily and regulate cellular processes such as cell migration, proliferation, polarization, adhesion, gene transcription and cytoskeletal structure. Rho GTPases function as molecular switches that cycle between GTP-bound (active state) and GDP-bound (inactive state) forms. Leukaemia-associated RhoGEF (LARG) is a guanine nucleotide exchange factor (GEF) that activates RhoA subfamily GTPases by promoting the exchange of GDP for GTP. LARG is selective for RhoA subfamily GTPases and is an essential regulator of cell migration and invasion. Here, we describe the mechanisms by which LARG is regulated to facilitate the understanding of how LARG mediates functions like cell motility and to provide insight for better therapeutic targeting of these functions.
Collapse
Affiliation(s)
- Neda Z. Ghanem
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA
| | - Michelle L. Matter
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA
| | - Joe W. Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA,CONTACT Joe W. Ramos Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, USA
| |
Collapse
|
5
|
Connor K, Murray DW, Jarzabek MA, Tran NL, White K, Dicker P, Sweeney KJ, O’Halloran PJ, MacCarthy B, Shiels LP, Lodi F, Lambrechts D, Sarkaria JN, Schiffelers RM, Symons M, Byrne AT. Targeting the RhoGEF βPIX/COOL-1 in Glioblastoma: Proof of Concept Studies. Cancers (Basel) 2020; 12:cancers12123531. [PMID: 33256106 PMCID: PMC7761123 DOI: 10.3390/cancers12123531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is an incurable disease with a 14-month average life-expectancy following diagnosis, and clinical management has not improved in four decades. GBM mortality is due to rapid tumour growth and invasion into surrounding normal brain. Invasive cells make complete surgical removal of the tumour impossible, and result in disease relapse. Thus, it is imperative that any new treatment strategy takes these invading cells into consideration. Bevacizumab (Bev), which prevents the formation of new blood vessels, is an FDA approved therapy, but it has failed to increase overall survival in GBM and has even been shown to increase tumour invasion in some cases. Complementary anti-invasive therapies are therefore urgently required to enhance bevacizumab efficacy. We have identified βPIX/COOL-1, a RhoGEF protein which plays an important role in GBM cell invasion and angiogenesis and could be a useful target in this setting. Abstract Glioblastoma (GBM), a highly invasive and vascular malignancy is shown to rapidly develop resistance and evolve to a more invasive phenotype following bevacizumab (Bev) therapy. Rho Guanine Nucleotide Exchange Factor proteins (RhoGEFs) are mediators of key components in Bev resistance pathways, GBM and Bev-induced invasion. To identify GEFs with enhanced mRNA expression in the leading edge of GBM tumours, a cohort of GEFs was assessed using a clinical dataset. The GEF βPix/COOL-1 was identified, and the functional effect of gene depletion assessed using 3D-boyden chamber, proliferation, and colony formation assays in GBM cells. Anti-angiogenic effects were assessed in endothelial cells using tube formation and wound healing assays. In vivo effects of βPix/COOL-1-siRNA delivered via RGD-Nanoparticle in combination with Bev was studied in an invasive model of GBM. We found that siRNA-mediated knockdown of βPix/COOL-1 in vitro decreased cell invasion, proliferation and increased apoptosis in GBM cell lines. Moreover βPix/COOL-1 mediated endothelial cell migration in vitro. Mice treated with βPix/COOL-1 siRNA-loaded RGD-Nanoparticle and Bev demonstrated a trend towards improved median survival compared with Bev monotherapy. Our hypothesis generating study suggests that the RhoGEF βPix/COOL-1 may represent a target of vulnerability in GBM, in particular to improve Bev efficacy.
Collapse
Affiliation(s)
- Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - David W. Murray
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Monika A. Jarzabek
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Nhan L. Tran
- Department of Cancer Biology and Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ 85054, USA;
| | - Kieron White
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Patrick Dicker
- Epidemiology & Public Health, Royal College of Surgeons in Ireland, Dublin 2, Ireland;
| | - Kieron J. Sweeney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
- National Neurosurgical Department, Beaumont Hospital, Dublin 9, Ireland
| | - Philip J. O’Halloran
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
- National Neurosurgical Department, Beaumont Hospital, Dublin 9, Ireland
| | - Brian MacCarthy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Liam P. Shiels
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
| | - Francesca Lodi
- Center for Cancer Biology, Laboratory for Translational Genetics, Vlaams Instituut voor Biotechnologie (VIB), B-3000 Leuven, Belgium; (F.L.); (D.L.)
| | - Diether Lambrechts
- Center for Cancer Biology, Laboratory for Translational Genetics, Vlaams Instituut voor Biotechnologie (VIB), B-3000 Leuven, Belgium; (F.L.); (D.L.)
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 100 3584 Utrecht, The Netherlands;
| | - Marc Symons
- Department of Oncology & Cell Biology, Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, NY 11030, USA;
| | - Annette T. Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; (K.C.); (D.W.M.); (M.A.J.); (K.W.); (K.J.S.); (P.J.O.); (B.M.); (L.P.S.)
- Correspondence: ; Tel.: +353-1-402-8673
| |
Collapse
|