1
|
Kondo A, McGrady M, Nallapothula D, Ali H, Trevino AE, Lam A, Preska R, D'Angio HB, Wu Z, Lopez LN, Badhesha HK, Vargas CR, Ramesh A, Wiegley N, Han SS, Dall'Era M, Jen KY, Mayer AT, Afkarian M. Spatial proteomics of human diabetic kidney disease, from health to class III. Diabetologia 2024; 67:1962-1979. [PMID: 39037603 DOI: 10.1007/s00125-024-06210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS Diabetic kidney disease (DKD) is the leading cause of chronic and end-stage kidney disease in the USA and worldwide. Animal models have taught us much about DKD mechanisms, but translation of this knowledge into treatments for human disease has been slowed by the lag in our molecular understanding of human DKD. METHODS Using our Spatial TissuE Proteomics (STEP) pipeline (comprising curated human kidney tissues, multiplexed immunofluorescence and powerful analysis tools), we imaged and analysed the expression of 21 proteins in 23 tissue sections from individuals with diabetes and healthy kidneys (n=5), compared to those with DKDIIA, IIA-B and IIB (n=2 each) and DKDIII (n=1). RESULTS These analyses revealed the existence of 11 cellular clusters (kidney compartments/cell types): podocytes, glomerular endothelial cells, proximal tubules, distal nephron, peritubular capillaries, blood vessels (endothelial cells and vascular smooth muscle cells), macrophages, myeloid cells, other CD45+ inflammatory cells, basement membrane and the interstitium. DKD progression was associated with co-localised increases in inflammatory cells and collagen IV deposition, with concomitant loss of native proteins of each nephron segment. Cell-type frequency and neighbourhood analyses highlighted a significant increase in inflammatory cells and their adjacency to tubular and αSMA+ (α-smooth muscle actin-positive) cells in DKD. Finally, DKD progression showed marked regional variability within single tissue sections, as well as inter-individual variability within each DKD class. CONCLUSIONS/INTERPRETATION Using the STEP pipeline, we found alterations in protein expression, cellular phenotypic composition and microenvironment structure with DKD progression, demonstrating the power of this pipeline to reveal the pathophysiology of human DKD.
Collapse
Affiliation(s)
| | | | | | - Hira Ali
- Enable Medicine, Menlo Park, CA, USA
| | | | - Amy Lam
- Enable Medicine, Menlo Park, CA, USA
| | | | | | | | - Lauren N Lopez
- Division of Nephrology, University of California, Davis, CA, USA
| | | | - Chenoa R Vargas
- Division of Nephrology, University of California, Davis, CA, USA
| | | | - Nasim Wiegley
- Division of Nephrology, University of California, Davis, CA, USA
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Marc Dall'Era
- Department of Urologic Surgery, University of California-Davis Medical Center, Sacramento, CA, USA
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California- Davis, Sacramento, CA, USA
| | | | - Maryam Afkarian
- Division of Nephrology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Luxen M, Zwiers PJ, Jongman RM, Moser J, Pultar M, Skalicky S, Diendorfer AB, Hackl M, van Meurs M, Molema G. Sepsis induces heterogeneous transcription of coagulation- and inflammation-associated genes in renal microvasculature. Thromb Res 2024; 237:112-128. [PMID: 38579513 DOI: 10.1016/j.thromres.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) in sepsis patients increases patient mortality. Endothelial cells are important players in the pathophysiology of sepsis-associated AKI (SA-AKI), yet knowledge regarding their spatiotemporal involvement in coagulation disbalance and leukocyte recruitment is lacking. This study investigated the identity and kinetics of responses of different microvascular compartments in kidney cortex in response to SA-AKI. METHODS Laser microdissected arterioles, glomeruli, peritubular capillaries, and postcapillary venules from kidneys of mice subjected to cecal ligation and puncture (CLP) were analyzed using RNA sequencing. Differential expression and pathway enrichment analyses identified genes involved in coagulation and inflammation. A selection of these genes was evaluated by RT-qPCR in microvascular compartments of renal biopsies from patients with SA-AKI. The role of two identified genes in lipopolysaccharide-induced endothelial coagulation and inflammatory activation were determined in vitro in HUVEC using siRNA-based gene silencing. RESULTS CLP-sepsis in mice induced altered expression of approximately 400 genes in the renal microvasculature, with microvascular compartments exhibiting unique spatiotemporal responses. In mice, changes in gene expression related to coagulation and inflammation were most extensive in glomeruli at early and intermediate time points, with high induction of Plat, Serpine1, Thbd, Icam1, Stat3, and Ifitm3. In human SA-AKI, PROCR and STAT3 were induced in postcapillary venules, while SERPINE1 expression was diminished. IFITM3 was increased in arterioles and glomeruli. In vitro studies revealed that STAT3 and IFITM3 partly control endothelial coagulation and inflammatory activation. CONCLUSION Renal microvascular compartments in mice and humans exhibited heterogeneous changes in coagulation- and inflammation-related gene expression in response to SA-AKI. Additional research should aim at understanding the functional consequences of the here described heterogeneous microvascular responses to establish the usefulness of identified genes as therapeutic targets in SA-AKI.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter J Zwiers
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rianne M Jongman
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Jiang Y, Liu Z, Liu L, Xiong Z, Chen Y, Zhang S, Su C. Differential expression of serum TM, PAF, and CD62P in patients with autologous arteriovenous fistula and the correlation with vascular access function. Immun Inflamm Dis 2024; 12:e1227. [PMID: 38533915 PMCID: PMC10966918 DOI: 10.1002/iid3.1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND End-stage renal disease (ESRD) is the final stage of chronic kidney disease (CKD). AIMS We aimed to analyze the expression differences of serum thrombomodulin (TM), platelet-activating factor (PAF), and P-selectin (CD62P) in patients with autologous arteriovenous fistula (AVF) and the correlation with vascular access function. METHODS The case data were retrospectively analyzed. Moreover, 160 patients with AVF maintenance hemodialysis were selected as the AVF group, and 150 healthy participants were selected as the healthy control group. According to the function of vascular access, patients in the AVF group were divided into Group A (n = 50, after the first establishment of AVF), Group B (n = 64, normal vascular access function after hemodialysis treatment), and Group C (n = 46, vascular access failure). Pearson analysis was conducted to explore the correlation between serum TM, PAF, CD62P content, and vascular pathological examination indicators, to evaluate the value of TM, PAF, and CD62P levels in predicting vascular access failure in patients with AVF. RESULTS AND DISCUSSION The serum levels of TM, PAF, and CD62P were positively correlated with the expressions of CD68 and MCP-1, respectively (p < .001). Serum TM was positively correlated with the levels of PAF and CD62P (p < .001), and PAF was positively correlated with the levels of CD62P (p < .001), respectively. Serum levels of TM, PAF and CD62P were risk factors for vascular access failure in AVF patients (p < .05). The area under the curve of serum TM, PAF and CD62P levels in predicting vascular access failure in AVF patients was 0.879. CONCLUSION The serum levels of TM, PAF, and CD62P in AVF patients were correlated with the vascular access function of AVF patients, which was very important for maintaining the stability of vascular access function, and had certain value in predicting vascular access failure/disorder in AVF patients, and could be popularized and applied.
Collapse
Affiliation(s)
- Yan Jiang
- Department of NephrologyAffiliated Cancer Hospital of Guizhou Medical UniversityGuiyangChina
| | - Zongyang Liu
- Department of NephrologyAffiliated Cancer Hospital of Guizhou Medical UniversityGuiyangChina
| | - Liting Liu
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Zhiqian Xiong
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Yan Chen
- Department of NephrologyAffiliated Cancer Hospital of Guizhou Medical UniversityGuiyangChina
| | - Shuai Zhang
- Department of Interventional MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Chaojiang Su
- Department of NephrologyAffiliated Cancer Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
4
|
Wang W, Wu S, Wang AY, Wu T, Luo H, Zhao JW, Chen J, Li Y, Ding H. Thrombomodulin activation driven by LXR agonist attenuates renal injury in diabetic nephropathy. Front Med (Lausanne) 2023; 9:916620. [PMID: 36698821 PMCID: PMC9870310 DOI: 10.3389/fmed.2022.916620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023] Open
Abstract
Objective Inflammation and thrombosis are recognized as interrelated biological processes. Both thrombomodulin (TM) and factor XIII-A (FXIII-A) are involved in inflammation and coagulation process. However, their role in the pathogenesis of diabetic nephropathy (DN) remains unclear. In vitro study, the liver X receptor (LXR) agonist T0901317 can up-regulate the expression of TM in glomerular endothelial cells. Now we evaluated the interaction between TM activation and FXIII-A and their effects against renal injury. Methods We first evaluated the serum levels of FXIII-A and TM and the expression of TM, LXR-α and FXIII-A in renal tissues of patients with biopsy-proven DN. We then analyzed the expression of TM, LXR-α and FXIII-A in renal tissues of db/db DN mice after upregulating TM expression via T0901317 or downregulating its expression via transfection of TM shRNA-loaded adenovirus. We also investigated the serum levels of Tumor necrosis factor (TNF)-α, Interleukin (IL)-6, creatinine, and urinary microalbumin level in db/db mice. Results Our study showed that elevations in serum levels of FXIII-A positively correlated to the serum levels of TM and were also associated with end-stage kidney disease in patients with DN. The number of TM+ cells in the renal tissues of patients with DN negatively correlated with the number of FXIII-A+ cells and positively correlated with the number of LXR-α+ cells and estimated glomerular filtration rate (eGFR), whereas the number of FXIII-A+ cells negatively correlated with the eGFR. Conclusion Thrombomodulin activation with T0901317 downregulated FXIII-A expression in the kidney tissue and alleviated renal injury in db/db mice.
Collapse
Affiliation(s)
- Wei Wang
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Song Wu
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Amanda Y. Wang
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales Australia, Newtown, NSW, Australia,Department of Renal Medicine, Concord Repatriation General Hospital, Concord Clinical School, University of Sydney, Camperdown, NSW, Australia,Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia,*Correspondence: Amanda Y. Wang ✉
| | - Tao Wu
- Internal Medicine, Louisiana State University Health Science at Shreveport, Shreveport, LA, United States
| | - Haojun Luo
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jia Wei Zhao
- The Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Jin Chen
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Li
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hanlu Ding
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China,Hanlu Ding ✉
| |
Collapse
|
5
|
Hu YQ, Wang ZX, Xiang K, He YS, Feng YT, Shuai ZW, Pan HF. Elevated circulating thrombomodulin levels in systemic lupus erythematosus: a systematic review and meta-analysis. Curr Pharm Des 2021; 28:306-312. [PMID: 34766888 DOI: 10.2174/1381612827666211111152319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Thrombomodulin (TM) is closely related to the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). However, current evidence on circulating TM levels in SLE patients is contradictory. We conducted this meta-analysis to more accurately assess circulating TM levels in patients with SLE and lupus nephritis (LN) and to analyze related influencing factors. METHODS Systematic search of relevant documents was conducted in PubMed, Embase, and The Cochrane Library databases (up to 28 February 2021). Studies on the comparison of circulating TM between SLE patients and controls were screened and evaluated for inclusion. Random-effects model analysis was applied to calculate the combined standardized mean difference (SMD) with a 95% confidence interval (CI). Heterogeneity was estimated by Q statistics and I2. RESULTS A total of 353 articles were identified, 14 provided adequate information for this study finally. The results illustrated that SLE patients had higher TM levels than healthy controls (SMD =0.38, 95% CI: 0.02 to 0.74, p=0.04). Circulating TM levels were increased in patients with active SLE compared to inactive SLE patients (SMD=1.12, 95% CI: 0.03 to 2.20, p=0.04). In addition, circulating TM levels of SLE patients with LN were higher than those without LN (SMD=4.55, 95% CI: 1.97 to 7.12, p=0.001). CONCLUSIONS The circulating TM levels in SLE patients are enhanced. In addition, circulating TM levels may be practical in reflecting the disease activity and nephritis involvement of SLE patients.
Collapse
Affiliation(s)
- Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhi-Xin Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Ya-Ting Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| |
Collapse
|