1
|
Liu T, Lu Q, Liu Z, Lin X, Peng L, Lu X, Guo W, Liu P, Zhang N, Wu S. Causal association of type 2 diabetes with central retinal artery occlusion: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1379549. [PMID: 39175569 PMCID: PMC11338930 DOI: 10.3389/fendo.2024.1379549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Background Central retinal artery occlusion (CRAO) is a medical condition characterized by sudden blockage of the central retinal artery, which leads to a significant and often irreversible loss of vision. Observational studies have indicated that diabetes mellitus is a risk factor for CRAO; however, there is no research on the causal relationship between diabetes mellitus, particularly type 2 diabetes, and CRAO. This study aimed to perform Mendelian randomization (MR) analysis to clarify the causal relationship between type 2 diabetes and CRAO. Methods Genetic variants associated with type 2 diabetes were selected from two different datasets. A recent genome-wide association study of CRAO conducted using the FinnGen database was used as the outcome data. A two-sample MR was performed to evaluate the causal relationship between type 2 diabetes and CRAO. Inverse variance weighting was the primary method, and MR-Egger, maximum likelihood, and median weighting were used as complementary methods. A multivariate MR (MVMR) analysis was performed to further evaluate the robustness of the results. Cochran's Q test, MR-Egger intercept test, and MR-PRESSO global test were used for the sensitivity analyses. Results Genetically predicted type 2 diabetes was causally associated with CRAO(odds ratio [OR] =2.108, 95% confidence interval [CI]: 1.221-3.638, P=7.423×10-3), which was consistent with the results from the validation dataset (OR=1.398, 95%CI: 1.015-1.925, P=0.040). The MVMR analysis suggested that type 2 diabetes may be an independent risk factor for CRAO (adjusted OR=1.696; 95%CI=1.150-2.500; P=7.655×10-3), which was assumed by the validation dataset (adjusted OR=1.356; 95%CI=1.015-1.812; P=0.039). Conclusion Our results show that genetically predicted type 2 diabetes may be causally associated with CRAO in European populations. This suggests that preventing and controlling type 2 diabetes may reduce the risk of CRAO.
Collapse
Affiliation(s)
- Tong Liu
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Qingli Lu
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Zhongzhong Liu
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Xuemei Lin
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Linna Peng
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Xiping Lu
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Weiyan Guo
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Pei Liu
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Na Zhang
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| | - Songdi Wu
- Department of Neurology & Neuro-ophthalmology, The First Hospital of Xi’an (The First Affiliated Hospital of Northwestern University), Xi’an, China
- Xi’an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi’an, China
| |
Collapse
|
2
|
Lendzioszek M, Bryl A, Poppe E, Zorena K, Mrugacz M. Retinal Vein Occlusion-Background Knowledge and Foreground Knowledge Prospects-A Review. J Clin Med 2024; 13:3950. [PMID: 38999513 PMCID: PMC11242360 DOI: 10.3390/jcm13133950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Thrombosis of retinal veins is one of the most common retinal vascular diseases that may lead to vascular blindness. The latest epidemiological data leave no illusions that the burden on the healthcare system, as impacted by patients with this diagnosis, will increase worldwide. This obliges scientists to search for new therapeutic and diagnostic options. In the 21st century, there has been tremendous progress in retinal imaging techniques, which has facilitated a better understanding of the mechanisms related to the development of retinal vein occlusion (RVO) and its complications, and consequently has enabled the introduction of new treatment methods. Moreover, artificial intelligence (AI) is likely to assist in selecting the best treatment option for patients in the near future. The aim of this comprehensive review is to re-evaluate the old but still relevant data on the RVO and confront them with new studies. The paper will provide a detailed overview of diagnosis, current treatment, prevention, and future therapeutic possibilities regarding RVO, as well as clarifying the mechanism of macular edema in this disease entity.
Collapse
Affiliation(s)
- Maja Lendzioszek
- Department of Ophthalmology, Voivodship Hospital, 18-400 Lomza, Poland
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Ewa Poppe
- Department of Ophthalmology, Voivodship Hospital, 18-400 Lomza, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdansk, Dębinki 7, 80-211 Gdansk, Poland
| | - Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
3
|
Nguyen Y, Rudd Zhong Manis J, Ronczkowski NM, Bui T, Oxenrider A, Jadeja RN, Thounaojam MC. Unveiling the gut-eye axis: how microbial metabolites influence ocular health and disease. Front Med (Lausanne) 2024; 11:1377186. [PMID: 38799150 PMCID: PMC11122920 DOI: 10.3389/fmed.2024.1377186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.
Collapse
Affiliation(s)
- Yvonne Nguyen
- Mercer University School of Medicine, Macon, GA, United States
| | | | | | - Tommy Bui
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Allston Oxenrider
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Ravirajsinh N. Jadeja
- Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Menaka C. Thounaojam
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Mrowicka M, Mrowicki J, Majsterek I. Relationship between Biochemical Pathways and Non-Coding RNAs Involved in the Progression of Diabetic Retinopathy. J Clin Med 2024; 13:292. [PMID: 38202299 PMCID: PMC10779474 DOI: 10.3390/jcm13010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic retinopathy (DR) is a progressive blinding disease, which affects the vision and quality of life of patients, and it severely impacts the society. This complication, caused by abnormal glucose metabolism, leads to structural, functional, molecular, and biochemical abnormalities in the retina. Oxidative stress and inflammation also play pivotal roles in the pathogenic process of DR, leading to mitochondrial damage and a decrease in mitochondrial function. DR causes retinal degeneration in glial and neural cells, while the disappearance of pericytes in retinal blood vessels leads to alterations in vascular regulation and stability. Clinical changes include dilatation and blood flow changes in response to the decrease in retinal perfusion in retinal blood vessels, leading to vascular leakage, neovascularization, and neurodegeneration. The loss of vascular cells in the retina results in capillary occlusion and ischemia. Thus, DR is a highly complex disease with various biological factors, which contribute to its pathogenesis. The interplay between biochemical pathways and non-coding RNAs (ncRNAs) is essential for understanding the development and progression of DR. Abnormal expression of ncRNAs has been confirmed to promote the development of DR, suggesting that ncRNAs such as miRNAs, lncRNAs, and circRNAs have potential as diagnostic biomarkers and theranostic targets in DR. This review provides an overview of the interactions between abnormal biochemical pathways and dysregulated expression of ncRNAs under the influence of hyperglycemic environment in DR.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.M.); (I.M.)
| | | | | |
Collapse
|
5
|
Luo W, Skondra D. Elucidating the Role of the Microbiome in Ocular Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1622-1626. [PMID: 37683929 DOI: 10.1016/j.ajpath.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Wendy Luo
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|