1
|
Fathi M, Vakili K, Mohammadzadeh I, Sani M, Khakpour Y, Azimi H, Norouzian M, Moghaddam MH, Khodagholi F, Sadrinasab S, Gilavand HK, Ebrahimi MJ, Moafi M, Beirami A, Hasanzadeh M, Bahar R, Bayat AH, Alamian S, Aliaghaei A. The effect of Brucella abortus on glial activation and cell death in adult male rat's hippocampus. Brain Res Bull 2024; 217:111061. [PMID: 39222672 DOI: 10.1016/j.brainresbull.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
A zoonotic disease called brucellosis can cause flu-like symptoms and heart inflammation. The bacteria responsible for this disease can also enter the brain, causing a condition called neurobrucellosis that can result in long-term neurological problems. In this study, researchers aimed to determine the changes in the hippocampal cells of rats infected with Brucella. For the study, 24 adult male albino rats were inoculated with 1 × 106 CFU Brucella abortus 544. The rats were then deeply anesthetized, and their hippocampus samples were taken for stereological, histological, and molecular studies. The results showed that the infected rats had increased microgliosis and astrogliosis. Furthermore, a high level of caspase-3 in their hippocampal tissue indicated their susceptibility to apoptosis. Additionally, there was a decrease in expression of Ki67, which further supported this. Sholl's analysis confirmed a significant failure in glial morphology. The study demonstrated that the pathogen has the ability to destroy the hippocampus and potentially affect its normal physiology. However, more research is needed to clarify various aspects of neurobrucellosis.
Collapse
Affiliation(s)
- Mobina Fathi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kimia Vakili
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ibrahim Mohammadzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical sciences, Tehran, Iran.
| | - Mojtaba Sani
- SNSI-SaniNeuroSapiens Institute, Hanover, Germany.
| | - Yaser Khakpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Helia Azimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shayan Sadrinasab
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Helia Karami Gilavand
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Ebrahimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maral Moafi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amirreza Beirami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maral Hasanzadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Bahar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir-Hossein Bayat
- Department of Basic Sciences, Saveh University of Medical Sciences, Saveh, Iran.
| | - Saeed Alamian
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Abushahba MFN, Dadelahi AS, Ponzilacqua-Silva B, Moley CR, Skyberg JA. Contrasting roles for IgM and B-cell MHCII expression in Brucella abortus S19 vaccine-mediated efficacy against B. melitensis infection. mSphere 2024; 9:e0075023. [PMID: 38349167 PMCID: PMC10964430 DOI: 10.1128/msphere.00750-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Brucellosis, caused by the bacterium Brucella, poses a significant global threat to both animal and human health. Although commercial live Brucella vaccines including S19, RB51, and Rev1 are available for animals, their unsuitability for human use and incomplete efficacy in animals necessitate the further study of vaccine-mediated immunity to Brucella. In this study, we employed in vivo B-cell depletion, as well as immunodeficient and transgenic mouse models, to comprehensively investigate the roles of B cells, antigen uptake and presentation, antibody production, and class switching in the context of S19-mediated immunity against brucellosis. We found that antibody production, and in particular secretory IgM plays a protective role in S19-mediated immunity against virulent Brucella melitensis early after the challenge in a manner associated with complement activation. While T follicular helper cell deficiency dampened IgG production and vaccine efficacy at later stages of the challenge, this effect appeared to be independent of antibody production and rather was associated with altered T-cell function. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy at later timepoints after the challenge. In addition, B-cell depletion after vaccination, but before the challenge, enhanced S19-mediated protection against brucellosis, suggesting a deleterious role of B cells during the challenge phase. Collectively, our findings indicate antibody production is protective, while B-cell MHCII expression is deleterious, to live vaccine-mediated immunity against brucellosis. IMPORTANCE Brucella is a neglected zoonotic pathogen with a worldwide distribution. Our study delves into B-cell effector functions in live vaccine-mediated immunity against brucellosis. Notably, we found antibody production, particularly secretory IgM, confers protection against virulent Brucella melitensis in vaccinated mice, which was associated with complement activation. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy. In addition, B-cell depletion after vaccination, but before the B. melitensis challenge, enhanced protection against infection, suggesting a detrimental B-cell role during the challenge phase. Interestingly, deficiency of T follicular helper cells, which are crucial for aiding germinal center B cells, dampened vaccine efficacy at later stages of challenge independent of antibody production. This study underscores contrasting and phase-dependent roles of B-cell effector functions in vaccine-mediated immunity against Brucella.
Collapse
Affiliation(s)
- Mostafa F. N. Abushahba
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Alexis S. Dadelahi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Bárbara Ponzilacqua-Silva
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Charles R. Moley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Jerod A. Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Chen L, Lin X, Cai X, Zeng S, Yuan Y, Huang Z, Yan J, Li Y. The challenge of managing ischemic stroke in brucellosis: a case report. Front Immunol 2024; 15:1347216. [PMID: 38533516 PMCID: PMC10963473 DOI: 10.3389/fimmu.2024.1347216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
A 64-year-old woman was admitted to the hospital for sudden weakness in one of her left limbs. The patient was diagnosed with acute ischemic stroke (IS) of undetermined cause and received intravenous thrombolysis. Following thrombolysis, the patient's left limb weakness improved, but she subsequently developed recurrent high fever and delirium. Further diagnostic tests revealed that she had been infected with Brucella melitensis. The patient showed significant improvement during anti-infection treatment for Brucellosis and secondary prevention treatment for IS. However, her condition unexpectedly worsened on the 44th day after admission due to a hemorrhagic stroke (HS), which required an urgent craniotomy. Immunohistochemical analysis of the hematoma sample collected during the operation showed the presence of CD4+ and CD8+ T lymphocytes surrounding the blood vessels. This case highlights the unique challenge of managing IS in brucellosis and sheds light on the potential role of T lymphocytes in the immune response related to stroke.
Collapse
Affiliation(s)
- Linfa Chen
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Xiaolong Lin
- Department of Pathology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Xiuqu Cai
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Shiting Zeng
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Yanquan Yuan
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Zhiyong Huang
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Jinjin Yan
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|