1
|
O'Hagan R, Hsu LY, Li H, Hong CG, Parel PM, Berg AR, Manyak GA, Bui V, Patel NH, Florida EM, Teague HL, Playford MP, Zhou W, Dey D, Chen MY, Mehta NN, Sorokin AV. Longitudinal association of epicardial and thoracic adipose tissues with coronary and cardiac characteristics in psoriasis. Heliyon 2023; 9:e20732. [PMID: 37867905 PMCID: PMC10585224 DOI: 10.1016/j.heliyon.2023.e20732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Background s: Psoriasis is a disease of systemic inflammation associated with increased cardiometabolic risk. Epicardial adipose tissue (EAT) and thoracic adipose tissue (TAT) are contributing factors for atherosclerosis and cardiac dysfunction. We strove to assess the longitudinal impact of the EAT and TAT on coronary and cardiac characteristics in psoriasis. Methods The study consisted of 301 patients with baseline coronary computed tomography angiography (CTA), of which 139 had four-year follow up scans. EAT and TAT volumes from non-contrast computed tomography scans were quantified by an automated segmentation framework. Coronary plaque characteristics and left ventricular (LV) mass were quantified by CTA. Results When stratified by baseline EAT and TAT volume quartiles, a stepwise significant increase in cardiometabolic parameters was observed. EAT and TAT volumes associated with fibro-fatty burden (FFB) (TAT: ρ = 0.394, P < 0.001; EAT: ρ = 0.459, P < 0.001) in adjusted models. Only EAT had a significant four-year time-dependent association with FFB in fully adjusted models (β = 0.307 P = 0.003), whereas only TAT volume associated with myocardial injury in fully adjusted models (TAT: OR = 1.57 95 % CI = (1.00-2.60); EAT: OR = 1.46 95 % CI = (0.91-2.45). Higher quartiles of EAT and TAT had increased LV mass and developed strong correlation (TAT: ρ = 0.370, P < 0.001; EAT: ρ = 0.512, P < 0.001). Conclusions Our study is the first to explore how both EAT and TAT volumes associate with increased cardiometabolic risk profile in an inflamed psoriasis cohorts and highlight the need for further studies on its use as a potential prognostic tool for high-risk coronary plaques and cardiac dysfunction.
Collapse
Affiliation(s)
- Ross O'Hagan
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li-Yueh Hsu
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Haiou Li
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christin G. Hong
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip M. Parel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander R. Berg
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grigory A. Manyak
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vy Bui
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nidhi H. Patel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth M. Florida
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather L. Teague
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wunan Zhou
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcus Y. Chen
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V. Sorokin
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Tang Q, Chen S, Rizvi SAH, Qu J, Wang L, Wang S, Ma C, Liu L, Kang W. Two Alkaloids From Delphinium brunonianum Royle, Their Anti-inflammatory and Anti-oxidative Stress Activity via NF-κB Signaling Pathway. Front Nutr 2022; 8:826957. [PMID: 35127798 PMCID: PMC8812339 DOI: 10.3389/fnut.2021.826957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, we isolated and identified four compounds in Delphinium brunonianum Royle, and they were Delbrunine (1), 4-O-α-D-Glucosyl benzoic acid (2), Kaempferol 3-O-β-D-glucopyranoside 7-O-α-L-rhamnopyranoside (3) and Eldeline (4). Furthermore, the anti-inflammatory activity of these compounds was screened in RAW264.7 cells. The results showed that the anti-inflammatory activities of compounds 2 and 3 were weak, and 1, 4 had good anti-inflammatory activity. The macrophage inflammation model was established by lipopolysaccharide (LPS). Then, the anti-inflammatory activity was evaluated by ELISA kits, qRT-PCR experiment and western blot experiment. And the anti-oxidative stress activity was assessed by flow cytometry. The results showed that compounds 1, 4 could significantly inhibit the elevation of inflammatory factors nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and also had obvious inhibitory effects on the production of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). In addition, compounds 1 and 4 could effectively inhibit the overexpression of reactive oxygen species (ROS) in RAW264.7 cells that activated by LPS. These results indicated that compounds 1 and 4 may exert anti-inflammatory and anti-oxidative stress effects through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qi Tang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Sitan Chen
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | | | - Jiaojiao Qu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Li Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Senye Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Lijun Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| |
Collapse
|