1
|
Marques da Silva M, Santana Moura YA, Leite AHP, Souza KLDS, Brandão Costa RMP, Nascimento TP, Porto ALF, Bezerra RP. Toxicological assays in the evaluation of safety assessment of fibrinolytic enzymes. Drug Chem Toxicol 2024; 47:1393-1403. [PMID: 39155645 DOI: 10.1080/01480545.2024.2367561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) cause 30% of deaths each year, and in 2030, around 23.6 million people will die due to CVDs. The major challenge is to obtain molecules with minimal adverse reactions that can prevent and dissolve blood clots. In this context, fibrinolytic enzymes from diverse microorganism sources have been extensively investigated due to their potential to act directly and specifically on the fibrin clot, preventing side effects and performing potential thrombolytic effects. However, most researches focus on the purification and characterization of proteases, with little emphasis on the mechanism of action and pharmacological characteristics, including toxicity assays which are essential to assess safety and side effects. Therefore, this work aims to emphasize the importance of evaluations indicating the toxicological profile of fibrinolytic proteases through in vitro and in vivo tests. Both types of assays contribute as preclinical stage in drug development and are crucial for clinical applications. This scarcity creates arbitrary barriers to further studies. This work should further encourage the development of studies to ensure the safety and effectivity of fibrinolytic proteases.
Collapse
Affiliation(s)
- Marllyn Marques da Silva
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Yanara Alessandra Santana Moura
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | | | | | | | | | - Ana Lúcia Figueiredo Porto
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Raquel Pedrosa Bezerra
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| |
Collapse
|
2
|
Wang D, Kou Y, Guo T, Duan L, Chen J, Duzhou C, Huang T, Liu X, Deng Y, Song Y. Intravenous injection of nattokinase-heparin electrostatic complex improves the therapeutic effect of advanced tumors by dissolving cancer-related thrombosis. Life Sci 2024; 355:122935. [PMID: 39094906 DOI: 10.1016/j.lfs.2024.122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
AIMS Cancer-related thrombosis (CAT) is a common complication in cancer patients, significantly impacting their quality of life and survival prospects. Nattokinase (NK) has potent thrombolytic properties, however, its efficacy is limited by low oral bioavailability and the risk of severe allergic reactions with intravenous use. Heparin (HP) is a widely used anticoagulant in clinical settings. This study aimed to overcome the intravenous toxicity of NK and explore its effect on CAT in advanced tumors. MAIN METHODS In this study, NK-HP electrostatic complexes were constructed, and their safety and thrombolytic efficacy were verified through guinea pig allergy tests, mouse tail vein tests, and both in vivo and in vitro thrombolysis experiments. Additionally, an S180 advanced tumor model was developed and combined with sialic acid-modified doxorubicin liposomes (DOX-SAL) to investigate the impact of NK-HP on CAT and its antitumor effects in advanced tumors. KEY FINDINGS We observed that NK-HP can eliminate the intravenous injection toxicity of NK, has strong thrombolytic performance, and can prevent thrombosis formation. Intravenous injection of NK-HP can enhance the antitumor effect of DOX-SAL by reducing the fibrin content in advanced tumors and increasing the levels of the cross-linked protein degradation product D-dimer. SIGNIFICANCE This study developed a method to eliminate the intravenous injection toxicity of NK, proposing a promising therapeutic strategy for CAT treatment, particularly for CAT in advanced tumors, and improving the efficacy of nano-formulations in anti-tumor therapy.
Collapse
Affiliation(s)
- Dazhi Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanmei Kou
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tiantian Guo
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lili Duan
- Sungen Biotech Co., Ltd., Shantou 515000, China
| | | | - Chunxiao Duzhou
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tiancheng Huang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Liu Z, He Y, Zhang H, Ma X. Layer-by-layer self-assembly embedding of nattokinase in chitosan/γ-polyglutamic acid: Preparation, fibrinolytic activity, stability, and in vitro digestion study. Eur J Pharm Biopharm 2024; 199:114281. [PMID: 38599299 DOI: 10.1016/j.ejpb.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Nattokinase (NK) is a thrombolytic enzyme extracted from natto, which can be used to prevent and treat blood clots. However, it is sensitive to the environment, especially the acidic environment of human stomach acid, and its effect of oral ingestion is minimal. This study aims to increase NK's oral and storage stability by embedding NK in microcapsules prepared with chitosan (CS) and γ-polyglutamic acid (γ-PGA). The paper prepared a double-layer NK oral delivery system by layer self-assembly and characterized its stability and in vitro simulated digestion. According to the research results, the bilayer putamen structure has a protective effect on NK, which not only maintains high activity in various environments (such as acid-base, high temperature) and long-term storage (60 days), but also effectively protects the loaded NK from being destroyed in gastric fluid and achieves its slow release. This work has proved the feasibility of the design of bilayer putamen structure in oral administration and has good fibrolytic activity. Therefore, the novel CS/γ-PGA microcapsules are expected to be used in nutraceutical delivery systems.
Collapse
Affiliation(s)
- Zhihan Liu
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Yan He
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Hua Zhang
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Xia Ma
- Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
4
|
Priya V, Samridhi, Singh N, Dash D, Muthu MS. Nattokinase Encapsulated Nanomedicine for Targeted Thrombolysis: Development, Improved in Vivo Thrombolytic Effects, and Ultrasound/Photoacoustic Imaging. Mol Pharm 2024; 21:283-302. [PMID: 38126777 DOI: 10.1021/acs.molpharmaceut.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nattokinase (NK), a potent thrombolytic enzyme that dissolves blood clots, is highly used in the treatment of cardiovascular disorders. However, its effective delivery remains demanding because of stability and bioavailability problems owing to its high molecular weight and proteineous nature. In this research, we have developed novel NK-loaded nontargeted liposomes (NK-LS) and targeted liposomes (RGD-NK-LS and AM-NK-LS) by the reverse phase evaporation method. The physiochemical characterizations (particle size, polydispersity index, zeta potential, and morphology) were performed by a Zetasizer, SEM, TEM, and AFM. The Bradford assay and XPS analysis confirmed the successful surface conjugation of the targeting ligands. Platelet interaction studies by CLSM, photon imager optima, and flow cytometry showed significantly higher (P < 0.05) platelet binding affinity of targeted liposomes. In vitro evaluations were performed using human blood and a fibrinolysis study by CLSM imaging demonstrating the potent antithrombotic efficacy of AM-NK-LS. Furthermore, bleeding and clotting time studies revealed that the targeted liposomes were free from any bleeding complications. Moreover, the in vivo FeCl3 model on Sprague-Dawley (SD) rats using a Doppler flow meter and ultrasound/photoacoustic imaging indicated the increased % thrombolysis and potent affinity of targeted liposomes toward the thrombus site. Additionally, in vitro hemocompatibility and histopathology studies demonstrated the safety and biocompatibility of the nanoformulations.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Samridhi
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| |
Collapse
|
5
|
Lei K, Yuan M, Li S, Zhou Q, Li M, Zeng D, Guo Y, Guo L. Performance evaluation of E-nose and E-tongue combined with machine learning for qualitative and quantitative assessment of bear bile powder. Anal Bioanal Chem 2023:10.1007/s00216-023-04740-5. [PMID: 37199792 DOI: 10.1007/s00216-023-04740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Bear bile powder (BBP) is a valuable animal-derived product with a huge adulteration problem on market. It is a crucially important task to identify BBP and its counterfeit. Electronic sensory technologies are the inheritance and development of traditional empirical identification. Considering that each drug has its own specific odor and taste characteristics, electronic tongue (E-tongue), electronic nose (E-nose) and GC-MS were used to evaluate the aroma and taste of BBP and its common counterfeit. Two active components of BBP, namely tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) were measured and linked with the electronic sensory data. The results showed that bitterness was the main flavor of TUDCA in BBP, saltiness and umami were the main flavor of TCDCA. The volatiles detected by E-nose and GC-MS were mainly aldehydes, ketones, alcohols, hydrocarbons, carboxylic acids, heterocyclic, lipids, and amines, mainly earthy, musty, coffee, bitter almond, burnt, pungent odor descriptions. Four different machine learning algorithms (backpropagation neural network, support vector machine, K-nearest neighbor, and random forest) were used to identify BBP and its counterfeit, and the regression performance of these four algorithms was also evaluated. For qualitative identification, the algorithm of random forest has shown the best performance, with 100% accuracy, precision, recall and F1-score. Also, the random forest algorithm has the best R2 and the lowest RMSE in terms of quantitative prediction.
Collapse
Affiliation(s)
- Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Sihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Meifeng Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dafu Zeng
- Chengdu Jingbo Biotechnology Co., Ltd, No.39 Renhe Street, Chengdu, 611731, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China.
| |
Collapse
|
6
|
Zhang Y, Pei P, Zhou H, Xie Y, Yang S, Shen W, Hu L, Zhang Y, Liu T, Yang K. Nattokinase-Mediated Regulation of Tumor Physical Microenvironment to Enhance Chemotherapy, Radiotherapy, and CAR-T Therapy of Solid Tumor. ACS NANO 2023; 17:7475-7486. [PMID: 37057972 DOI: 10.1021/acsnano.2c12463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The therapy of solid tumors is always hampered by the intrinsic tumor physical microenvironment (TPME) featured with compact and rigid extracellular matrix (ECM) microstructures. Herein, we introduce nattokinase (NKase), a thrombolytic healthcare drug, to comprehensively regulate the TPME for versatile enhancement of various therapy modalities. Intratumoral injection of NKase not only degrades the major ECM component fibronectin but also inhibits cancer-associated fibroblasts (CAFs) in generating fibrosis, resulting in decreased tumor stiffness, enhanced perfusion, and hypoxia alleviation. The NKase-mediated regulation of the TPME significantly promotes the tumoral accumulation of therapeutic agents, leading to efficient chemotherapy without inducing side effects. Additionally, the enhancement of tumor radiotherapy based on radiosensitizers was also achieved by the pretreatment of intratumorally injected NKase, which could be ascribed to the elevated oxygen saturation level in NKase-treated tumors. Moreover, a xenografted human breast MDB-MA-231 tumor model is established to evaluate the influence of NKase on chimeric antigen receptor (CAR)-T cell therapy, illustrating that the pretreatment of NKase could boost the infiltration of CAR-T cells into tumors and thus be a benefit for tumor inhibition. These findings demonstrate the great promise of the NKase-regulated TPME as a translational strategy for universal enhancement of therapeutic efficacy in solid tumors by various treatments.
Collapse
Affiliation(s)
- Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuyuan Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Tian H, Lin L, Ba Z, Xue F, Li Y, Zeng W. Nanotechnology combining photoacoustic kinetics and chemical kinetics for thrombosis diagnosis and treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Kou Y, Feng R, Chen J, Duan L, Wang S, Hu Y, Zhang N, Wang T, Deng Y, Song Y. Development of a nattokinase–polysialic acid complex for advanced tumor treatment. Eur J Pharm Sci 2020; 145:105241. [DOI: 10.1016/j.ejps.2020.105241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/04/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
|
9
|
Kusaczuk M. Tauroursodeoxycholate-Bile Acid with Chaperoning Activity: Molecular and Cellular Effects and Therapeutic Perspectives. Cells 2019; 8:E1471. [PMID: 31757001 PMCID: PMC6952947 DOI: 10.3390/cells8121471] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid that has been used for centuries in Chinese medicine. Chemically, TUDCA is a taurine conjugate of ursodeoxycholic acid (UDCA), which in contemporary pharmacology is approved by Food and Drug Administration (FDA) for treatment of primary biliary cholangitis. Interestingly, numerous recent studies demonstrate that mechanisms of TUDCA functioning extend beyond hepatobiliary disorders. Thus, TUDCA has been demonstrated to display potential therapeutic benefits in various models of many diseases such as diabetes, obesity, and neurodegenerative diseases, mostly due to its cytoprotective effect. The mechanisms underlying this cytoprotective activity have been mainly attributed to alleviation of endoplasmic reticulum (ER) stress and stabilization of the unfolded protein response (UPR), which contributed to naming TUDCA as a chemical chaperone. Apart from that, TUDCA has also been found to reduce oxidative stress, suppress apoptosis, and decrease inflammation in many in-vitro and in-vivo models of various diseases. The latest research suggests that TUDCA can also play a role as an epigenetic modulator and act as therapeutic agent in certain types of cancer. Nevertheless, despite the massive amount of evidence demonstrating positive effects of TUDCA in pre-clinical studies, there are certain limitations restraining its wide use in patients. Here, molecular and cellular modes of action of TUDCA are described and therapeutic opportunities and limitations of this bile acid are discussed.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222 Białystok, Poland
| |
Collapse
|
10
|
Vianney YM, Tjoa SEE, Aditama R, Dwi Putra SE. Designing a less immunogenic nattokinase from Bacillus subtilis subsp. natto: a computational mutagenesis. J Mol Model 2019; 25:337. [DOI: 10.1007/s00894-019-4225-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
|
11
|
da Silva MM, Rocha TA, de Moura DF, Chagas CA, de Aguiar Júnior FCA, da Silva Santos NP, Da Silva Sobral RV, do Nascimento JM, Lima Leite AC, Pastrana L, Costa RMPB, Nascimento TP, Porto ALF. Effect of acute exposure in swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regul Toxicol Pharmacol 2019; 103:282-291. [PMID: 30790607 DOI: 10.1016/j.yrtph.2019.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
The fibrinolytic enzyme produced by Mucor subtilissimus UCP 1262 was obtained by solid fermentation and purified by ion exchange chromatography using DEAE-Sephadex A50. The enzyme toxicity was evaluated using mammalian cell lineages: HEK-293, J774.A1, Sarcoma-180 and PBMCs which appeared to be viable at a level of 80%. The biochemical parameters of the mice treated with an acute dose of enzyme (2000 mg/mL) identified alterations of AST and ALT and the histomorphometric analysis of the liver showed a loss of endothelial cells (P < 0.001). However, these changes are considered minimal to affirm that there was a significant degree of hepatotoxicity. The comet assay and the micronucleus test did not identify damage in the DNA of the erythrocytes of the animals treated. The protease did not degrade the Aα and Bβ chains of human and bovine fibrinogens, thus indicating that it does not act as anticoagulant, but rather as a fibrinolytic agent. The assay performed to assess blood biocompatibility shows that at dose of 0.3-5 mg/mL the hemolytic grade is considered insignificant. Moreover, the enzyme did not prolong bleeding time in mice when dosed with 1 mg/kg. These results indicate that this enzyme produced is a potential competitor for developing novel antithrombotic drugs.
Collapse
Affiliation(s)
- Marllyn Marques da Silva
- Laboratory of Biotechnology and Pharmaceuticals, Academic Center of Vitoria, Federal University of Pernambuco, 55608-680, Vitória de Santo Antão, Pernambuco, Brazil.
| | - Tamiris Alves Rocha
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Danielle Feijó de Moura
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Cristiano Aparecido Chagas
- Laboratory of Biotechnology and Pharmaceuticals, Academic Center of Vitoria, Federal University of Pernambuco, 55608-680, Vitória de Santo Antão, Pernambuco, Brazil.
| | | | - Noêmia Pereira da Silva Santos
- Laboratory of Nanotechnology, Biotechnology and Cell Culture, Academic Center of Vitória, Federal University of Pernambuco, 55608-680, Vitória de Santo Antão, Pernambuco, Brazil.
| | - Renata Vitória Da Silva Sobral
- Laboratory of Research in Biotechnology and Hemoderivatives, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Jéssica Miranda do Nascimento
- Laboratory of Research in Biotechnology and Hemoderivatives, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Ana Cristina Lima Leite
- Laboratory of Research in Biotechnology and Hemoderivatives, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal.
| | - Romero Marcos Pedrosa Brandão Costa
- Laboratory of Bioactive Technology, Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s / n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil.
| | - Thiago Pajeú Nascimento
- Laboratory of Bioactive Technology, Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s / n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil.
| | - Ana Lúcia Figueiredo Porto
- Laboratory of Bioactive Technology, Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s / n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil.
| |
Collapse
|