1
|
Song X, Lin M, Fang T, Gong J, Wang J, Gao S, Xu X, Lv X, Gao X, Zhang J, Jiang S, Guo D. Maduramicin-guided nanotherapy: A polymeric micelles for targeted drug delivery in canine mammary tumors. Biomed Pharmacother 2024; 170:116062. [PMID: 38150878 DOI: 10.1016/j.biopha.2023.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Canine mammary tumors (CMT) can severely compromise the life quality of the affected dogs through local recurrence, distant metastases and ultimately succumb to death. Recently, more attention has been given to the potential antimetastatic effect of maduramicin (MAD) on breast cancer. However, its poor aqueous solubility and toxicity to normal tissues limit its clinical application. Therefore, to address the drawbacks of MAD and enhance its anticancer and antimetastatic effects, MAD-loaded TPGS polymeric micelles (MAD-TPGS) were prepared by a thin-film hydration technique. The optimized MAD-TPGS exhibited excellent size distribution, stability and improved water solubility. Cellular uptake assays showed that TPGS polymer micelles could enhance drug internalization. Moreover, TPGS synergistically improved the cytotoxicity of MAD by targeting mitochondrial organelles, improving reactive oxygen species levels and reducing the mitochondrial transmembrane potential. More importantly, MAD-TPGS significantly impeded the metastasis of tumor cells. In vivo results further confirmed that, in addition to exhibiting excellent biocompatibility, MAD-TPGS exhibited greater antitumor efficacy than free MAD. Interestingly, MAD-TPGS displayed superior suppression of CMT metastasis via tail vein injection compared to oral administration, indicating its suitability for intravenous delivery. Overall, MAD-TPGS could be applied as a potential antimetastatic cancer agent for CMT.
Collapse
Affiliation(s)
- Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Mengjuan Lin
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Tian Fang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Junqi Wang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shasha Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaolin Xu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xin Lv
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Junren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
2
|
Wei X, Zheng Z, Liu M, Yang Z, Xie E, Lin J, Gao Y, Tan R, She Z, Ma J, Yang L. Enzyme-responsive nanospheres target senescent cells for diabetic wound healing by employing chemodynamic therapy. Acta Biomater 2023; 172:407-422. [PMID: 37848101 DOI: 10.1016/j.actbio.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Evidence indicates that prolonged low-level inflammation and elevated-glucose-induced oxidative stress in diabetic wounds can accelerate senescence. The accumulation of senescent cells, in turn, inhibits cellular proliferation and migration, aggravating the inflammatory response and oxidative stress, ultimately impeding wound healing. In this study, we exploited the heightened lysosomal β-galactosidase activity detected in senescent cells to develop an innovative drug delivery system by encapsulating Fe3O4 with galactose-modified poly (lactic-co-glycolic acid) (PLGA) (F@GP). We found that F@GP can selectively release Fe3O4 into senescent cells, inducing ferroptosis via the Fenton reaction in the presence of elevated intracellular H2O2 levels. This showed that F@GP administration can serve as a chemodynamic therapy to eliminate senescent cells and promote cell proliferation. Furthermore, the F@GP drug delivery system gradually released iron ions into the diabetic wound tissues, enhancing the attenuation of cellular senescence, stimulating cell proliferation, promoting re-epithelialization, and accelerating the healing of diabetic wounds in mice. Our groundbreaking approach unveiled the specific targeting of senescence by F@GP, demonstrating its profound effect on promoting the healing of diabetic wounds. This discovery underscores the therapeutic potential of F@GP in effectively addressing challenging cases of wound repair. STATEMENT OF SIGNIFICANCE: The development of galactose-modified PLGA nanoparticles loaded with Fe3O4 (F@GP) represents a significant therapeutic approach for the treatment of diabetic wounds. These nanoparticles exhibit remarkable potential in selectively targeting senescent cells, which accumulate in diabetic wound tissue, through an enzyme-responsive mechanism. By employing chemodynamic therapy, F@GP nanoparticles effectively eliminate senescent cells by releasing iron ions that mediate the Fenton reaction. This targeted approach holds great promise for promoting diabetic wound healing by selectively eliminating senescent cells, which play a crucial role in impairing the wound healing process. The innovative utilization of F@GP nanoparticles as a therapeutic intervention offers a novel and potentially transformative strategy for addressing the challenges associated with diabetic wound healing.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Zhangfeifan Yang
- Department of Statistics, University of California Los Angeles, Los Angeles, USA
| | - Erlian Xie
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Rongwei Tan
- GuangDong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518107, China
| | - Zhending She
- GuangDong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518107, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China.
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Soleimani M, Mirzaei A, Cheraqpour K, Baharnoori SM, Arabpour Z, Ashraf MJ, Ghassemi M, Djalilian AR. The Potential of Mesenchymal Stem/Stromal Cell Therapy in Mustard Keratopathy: Discovering New Roads to Combat Cellular Senescence. Cells 2023; 12:2744. [PMID: 38067171 PMCID: PMC10705954 DOI: 10.3390/cells12232744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are considered a valuable option to treat ocular surface disorders such as mustard keratopathy (MK). MK often leads to vision impairment due to corneal opacification and neovascularization and cellular senescence seems to have a role in its pathophysiology. Herein, we utilized intrastromal MSC injections to treat MK. Thirty-two mice were divided into four groups based on the exposure to 20 mM or 40 mM concentrations of mustard and receiving the treatment or not. Mice were clinically and histopathologically examined. Histopathological evaluations were completed after the euthanasia of mice after four months and included hematoxylin and eosin (H&E), CK12, and beta-galactosidase (β-gal) staining. The treatment group demonstrated reduced opacity compared to the control group. While corneal neovascularization did not display significant variations between the groups, the control group did register higher numerical values. Histopathologically, reduced CK12 staining was detected in the control group. Additionally, β-gal staining areas were notably lower in the treatment group. Although the treated groups showed lower severity of fibrosis compared to the control groups, statistical difference was not significant. In conclusion, it seems that delivery of MSCs in MK has exhibited promising therapeutic results, notably in reducing corneal opacity. Furthermore, the significant reduction in the β-galactosidase staining area may point towards the promising anti-senescence potential of MSCs.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran; (M.S.); (A.M.); (K.C.)
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA; (S.M.B.); (Z.A.); (M.J.A.); (M.G.)
| | - Arash Mirzaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran; (M.S.); (A.M.); (K.C.)
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran; (M.S.); (A.M.); (K.C.)
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA; (S.M.B.); (Z.A.); (M.J.A.); (M.G.)
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA; (S.M.B.); (Z.A.); (M.J.A.); (M.G.)
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA; (S.M.B.); (Z.A.); (M.J.A.); (M.G.)
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA; (S.M.B.); (Z.A.); (M.J.A.); (M.G.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA; (S.M.B.); (Z.A.); (M.J.A.); (M.G.)
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 364] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Yadav P, Chatterjee K, Saini DK. Senescent cells in 3D culture show suppressed senescence signatures. Biomater Sci 2021; 9:6461-6473. [PMID: 34582533 DOI: 10.1039/d1bm00536g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible proliferation arrested but viable cellular state, has been implicated in the progression of several age-associated pathologies. A vast amount of information about senescence has been acquired in cultured cells; however, senescence in living organisms (in vivo) remains poorly understood, mainly because of technical limitations. Furthermore, it is now widely recognized that three-dimensional (3D) culture systems are a better mimic of the in vivo physiology. Herein, senescence was induced in HeLa cells by irradiation. Non-senescent or senescent cells were cultured in soft 3D polymer scaffolds and compared with cells in conventional two-dimensional (2D) culture. This work shows that the morphology of the senescent cells markedly varies between substrates/culture platforms, driving the differences in the cytoskeletal organization, cellular division, and nanomechanical properties. One characteristic feature of senescent cells on 2D culture systems is the enlarged and flattened morphology; however, such drastic changes are not seen in vivo. This is an artificial effect of the substrate, which renders such non-physiological morphology to senescent cells. In the 3D scaffolds, this artifact is reduced. Hence, it serves as a better mimic of tissues, leading to reduced expression of senescence-associated genes, implying that the 3D scaffolds suppress the senescence in cells.
Collapse
Affiliation(s)
- Parul Yadav
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
6
|
Bicer M, Cottrell GS, Widera D. Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:31. [PMID: 33413646 PMCID: PMC7791873 DOI: 10.1186/s13287-020-02094-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
As populations age across the world, osteoporosis and osteoporosis-related fractures are becoming the most prevalent degenerative bone diseases. More than 75 million patients suffer from osteoporosis in the USA, the EU and Japan. Furthermore, it is anticipated that the number of patients affected by osteoporosis will increase by a third by 2050. Although conventional therapies including bisphosphonates, calcitonin and oestrogen-like drugs can be used to treat degenerative diseases of the bone, they are often associated with serious side effects including the development of oesophageal cancer, ocular inflammation, severe musculoskeletal pain and osteonecrosis of the jaw.The use of autologous mesenchymal stromal cells/mesenchymal stem cells (MSCs) is a possible alternative therapeutic approach to tackle osteoporosis while overcoming the limitations of traditional treatment options. However, osteoporosis can cause a decrease in the numbers of MSCs, induce their senescence and lower their osteogenic differentiation potential.Three-dimensional (3D) cell culture is an emerging technology that allows a more physiological expansion and differentiation of stem cells compared to cultivation on conventional flat systems.This review will discuss current understanding of the effects of different 3D cell culture systems on proliferation, viability and osteogenic differentiation, as well as on the immunomodulatory and anti-inflammatory potential of MSCs.
Collapse
Affiliation(s)
- Mesude Bicer
- Stem Cell Biology and Regenerative Medicine Group, Reading School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK
| | - Graeme S Cottrell
- Cellular and Molecular Neuroscience, School of Pharmacy, University of Reading, Reading, UK
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, Reading School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
7
|
Das A, Datta P, Chowdhury AR, Barui A. Honey-incorporated nanofibre reduces replicative senescence of umbilical cord-derived mesenchymal stem cells. IET Nanobiotechnol 2021; 14:870-880. [PMID: 33399121 DOI: 10.1049/iet-nbt.2019.0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Umbilical cord-derived mesenchymal stem cells (UCDMSC) are attractive candidates for cell-based regenerative medicine. However, they are susceptible to replicative senescence during repetitive passaging for in-vitro expansion and induced senescence in an oxidative, inflammatory microenvironment in vivo. Aim of this study is to investigate if honey-incorporated matrices can be employed to reduce senescence of UCDMSC. Matrices were prepared by electrospinning solutions of honey with poly-vinyl alcohol (PVA). PVA:honey matrices exhibited free radical scavenging activity. Culture of UCDMSC on PVA:honey matrices showed improvement in cell proliferation compared to pure PVA nanofibres. Expression of vimentin indicated that mesenchymal phenotype is preserved after culturing on these matrices. Further, UCDMSC were serially subcultured and cells of two passages (P2 and P6) were evaluated for reactive oxygen species (ROS) load and senescence parameters. P6 cells showed a higher ROS load and β-galactosidase (β-gal) positive senescent cells compared to P2. However, culturing on PVA:honey substrates significantly reduced both ROS and β-gal markers compared to cells on PVA substrates. Honey contains several antioxidant and anti-inflammatory components, which can reduce the ROS-related senescence. Thus, it is concluded that honey containing nanofibres can be effective substrates for stem cell-based wound healing and regenerative medicine.
Collapse
Affiliation(s)
- Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|
8
|
Namviriyachote N, Muangman P, Chinaroonchai K, Chuntrasakul C, Ritthidej GC. Polyurethane-biomacromolecule combined foam dressing containing asiaticoside: fabrication, characterization and clinical efficacy for traumatic dermal wound treatment. Int J Biol Macromol 2020; 143:510-520. [DOI: 10.1016/j.ijbiomac.2019.10.166] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
|