1
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
2
|
Yang M, Zhu Y, Wei X, Feng J, He Y, Jiang J, Zhou Q, Zhang M, Zhang G, Ma W. Oral bomb effect nanotherapeutics alleviate ulcerative colitis through coordinated anti-inflammatory and pro-resolving strategies. Biomater Sci 2024; 12:5386-5403. [PMID: 39264298 DOI: 10.1039/d4bm00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Background: Ulcerative colitis (UC) is a debilitating chronic inflammatory bowel disease, and current treatments primarily focus on suppressing inflammation with limited efficacy. However, the resolution of inflammation also plays a crucial role in UC prognosis. Combining anti-inflammatory and pro-inflammatory resolution interventions may be a promising approach for treating UC. Materials and methods: The nano-bomb nanoparticles were validated for their ability to load CD98 siRNA (siCD98) and Annexin A1-mimetic peptides (Ac2-26 peptides), as well as release CO2 upon lysosomal escape. Surface modification with hyaluronic acid (HA) was assessed for its capability to target inflammatory tissues and cells. Biocompatibility and biosafety were evaluated through in vitro and in vivo studies. The anti-inflammatory and pro-resolving effects of siCD98@NPs and Ac2-26@NPs, both individually and in combination, were evaluated by measuring ROS production, pro-inflammatory cytokine expression, CD98 gene expression, and macrophage polarization. Results: These nanoparticles could efficiently load siCD98 and Ac2-26 peptides and release CO2 under acidic pH in the endo/lysosome to deliver drugs to the cytoplasm. HA could effectively target the inflammatory tissue and cells, showing good biocompatibility and biosafety both in vitro and in vivo. siCD98@NPs and Ac2-26@NPs showed anti-inflammatory effects by eliminating the over-production of ROS and down-regulating the expression of pro-inflammatory cytokines (TNF-α and IL-1β) and the CD98 gene; meanwhile, it showed pro-resolving function by inhibiting M0 to pro-inflammatory M1 macrophage conversion, with a more pronounced effect when combined with siCD98 and Ac2-26. The oral administration of chitosan-alginate hydrogel-encapsulated nanoparticles in UC model mice effectively alleviated inflammatory symptoms, reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β) and the CD98 gene, restored intestinal barrier function, and promoted M1 to M2 polarization, with a more pronounced effect when combined. Conclusion: By combining anti-inflammatory and pro-resolution interventions, these nanoparticles offer a novel therapeutic approach. This study offered a new approach for combination therapy of UC.
Collapse
Affiliation(s)
- Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaodan Wei
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinteng Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Jiang
- Department of Medical Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qi Zhou
- Department of Medical Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenqi Ma
- Department of Medical Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Li J, Zhang X, Pan L, Lin X, Zhang B, Ren J, Wang Q. Combinational strategy using albumin-based nanoparticles to enable synergetic anti-rheumatic efficacy and reduced hepatotoxicity. Int J Pharm 2024; 656:124111. [PMID: 38609057 DOI: 10.1016/j.ijpharm.2024.124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Methotrexate (MTX) is recognized as the golden standard for rheumatoid arthritis (RA) treatment. However, it can cause liver damage in long-term application. Although nanomedicines can target to inflamed sites, most of them tend to accumulate in liver. Glycyrrhizinic acid (GA) holds potential to reverse MTX-associated hepatotoxicity. The combination of GA and MTX might achieve a synergistic anti-inflammatory efficacy and reduced hepatotoxicity. As MTX and GA have totally different in vivo performance, it is necessary to co-encapsulate them in one carrier to coordinate their in vivo fates. Here, we co-delivered MTX and GA to arthritic joints using a human serum albumin-based nanoparticle (HSN). We found the dual drug-loaded albumin nanoparticles (HSN/MTX/GA) could preferentially distribute in inflamed joints, where GA can extend MTX retention by inhibiting the expression of efflux pumps for MTX, thereby exerting synergistic therapeutic effect. In liver tissues, GA was able to reverse the MTX-induced liver damage by activating anti-oxidant defense Nrf2/HO-1 and anti-apoptosis Bcl-2/Bax signaling. We offer a combinational strategy to effectively overcome the MTX-induced hepatotoxicity and enhance the anti-rheumatic efficacy simultaneously. Furthermore, we verified the underlying mechanism about how GA cooperated with MTX in vivo for the first time. Our findings can provide valuable insights for long-term treatment of RA.
Collapse
Affiliation(s)
- Jiao Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiqian Zhang
- Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Lihua Pan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Lin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianheng Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
4
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
5
|
He W, Fu D, Gai Y, Liu X, Yang C, Ye Z, Chen X, Liu J, Chang B. An infection-microenvironment-targeted and responsive peptide-drug nanosystem for sepsis emergency by suppressing infection and inflammation. Asian J Pharm Sci 2023; 18:100869. [PMID: 38161786 PMCID: PMC10755722 DOI: 10.1016/j.ajps.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening emergency that causes millions of deaths every year due to severe infection and inflammation. Nevertheless, current therapeutic regimens are inadequate to promptly address the vast diversity of potential pathogens. Omiganan, an antimicrobial peptide, has shown promise for neutralizing endotoxins and eliminating diverse pathogens. However, its clinical application is hindered by safety and stability concerns. Herein, we present a nanoscale drug delivery system (Omi-hyd-Dex@HA NPs) that selectively targets infectious microenvironments (IMEs) and responds to specific stimuli for efficient intervention in sepsis. The system consists of omiganan-dexamethasone conjugates linked by hydrazone bonds which self-assemble into nanoparticles coated with a hyaluronic acid (HA). The HA coating not only facilitates IMEs-targeting through interaction with intercellular-adhesion-molecule-1 on inflamed endotheliocytes, but also improves the biosafety of the nanosystem and enhances drug accumulation in primary infection sites triggered by hyaluronidase. The nanoparticles release dual drugs in IMEs through pH-sensitive cleavage of hydrazone bonds to eradicate pathogens and suppress inflammation. In multiple tissue infection and sepsis animal models, Omi-hyd-Dex@HA NPs exhibited rapid source control and comprehensive inflammation reduction, thereby preventing subsequent fatal complications and significantly improving survival outcomes. The bio-responsive and self-delivering nanosystem offers a promising strategy for systemic sepsis treatment in emergencies.
Collapse
Affiliation(s)
- Wei He
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Daan Fu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610065, China
| | - Chang Yang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zhilan Ye
- Department of Geriatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xu Chen
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingcheng Chang
- The Second Clinical College, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
6
|
Rani R, Raina N, Sharma A, Kumar P, Tulli HS, Gupta M. Advancement in nanotechnology for treatment of rheumatoid arthritis: scope and potential applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2287-2310. [PMID: 37166463 DOI: 10.1007/s00210-023-02514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Collapse
Affiliation(s)
- Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ajay Sharma
- Institute of Nuclear Medicine & Allied Sciences (INMAS-DRDO), Ministry of Defence, Brig. SK Mazumdar Marg, Lucknow Road, Timarpur, Delhi-110054, India
| | - Pramod Kumar
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
7
|
Ji Y, Sun L, Liu Y, Li Y, Li T, Gong J, Liu X, Ma H, Wang J, Chen B, Fung SY, Yang H. Dual Functioned Hexapeptide-Coated Lipid-Core Nanomicelles Suppress Toll-Like Receptor-Mediated Inflammatory Responses through Endotoxin Scavenging and Endosomal pH Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301230. [PMID: 37078808 DOI: 10.1002/advs.202301230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Excessive activation of Toll-like receptor (TLR) signaling pathways and the circulating endotoxin are key players in the pathogenesis of many acute and chronic inflammatory diseases. Regulation of TLR-mediated inflammatory responses by bioactive nanodevices represents a promising strategy for treating these diseases. In searching for novel, clinically applicable nanodevices with potent TLR inhibitory activities, three types of hexapeptide-modified nano-hybrids with different cores of phospholipid nanomicelles, liposomes, and poly(lactic-co-glycolic acid) nanoparticles are constructed. Interestingly, only the peptide-modified lipid-core nanomicelles (M-P12) display potent TLR inhibitory activities. Further mechanistic studies disclose that lipid-core nanomicelles have a generic property to bind to and scavenge lipophilic TLR ligands including lipopolysaccharide to block the ligand-receptor interaction and down-regulate the TLR signaling extracellularly. In addition, the peptide modification enables M-P12 a unique capability to modulate endosomal acidification upon being endocytosed into macrophages, which subsequently regulates the endosomal TLR signal transduction. In an acute lung injury mouse model, intratracheal administration of M-P12 can effectively target lung macrophages and reduce lung inflammation and injuries. This work defines a dual mechanism of action of the peptide-modified lipid-core nanomicelles in regulating TLR signaling, and provides new strategies for the development of therapeutic nanodevices for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yuting Ji
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Liya Sun
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Yuan Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Yanhui Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Tongxuan Li
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Jiameng Gong
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Xiali Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Huiqiang Ma
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Jingying Wang
- Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Bing Chen
- Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Shan-Yu Fung
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Hong Yang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| |
Collapse
|
8
|
Yu X, Mai Y, Wei Y, Yu N, Gao T, Yang J. Therapeutic potential of tolerance-based peptide vaccines in autoimmune diseases. Int Immunopharmacol 2023; 116:109740. [PMID: 36696858 DOI: 10.1016/j.intimp.2023.109740] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Autoimmune diseases are caused by the dysfunction of the body's immune regulatory system, which leads to the recognition of self-antigens and the destruction of self-tissues and is mediated by immune cells such as T and B cells, and affects 5-10% of the population worldwide. Current treatments such as non-steroidal anti-inflammatory drugs and glucocorticoids can only relieve symptoms of the disease and are accompanied by serious side effects that affect patient quality of life. The recent rise in antigen-specific therapies, especially vaccines carrying autoantigenic peptides, promises to change this disadvantage, where research has increased dramatically in the last decade. This therapy established specific immune tolerance by delivering peptide fragments containing disease-specific self-antigen epitopes to suppress excessive immune responses, thereby exerting a therapeutic effect, with high safety and specificity. This article presents the latest progress on the treatment of autoimmune diseases with autoantigen peptide vaccines. It includes the construction of peptide vaccine delivery system, the mechanism of inducing immune tolerance and its application.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Inflammation-responsive nanoparticles suppress lymphatic clearance for prolonged arthritis therapy. J Control Release 2022; 352:700-711. [PMID: 36347402 DOI: 10.1016/j.jconrel.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The clearance of nanomedicine in inflamed joints has been accelerated due to the increased lymph angiogenesis and lymph flow in arthritic sites. To maximize the therapeutic efficacy for rheumatoid arthritis (RA), it is necessary to facilitate targeted delivery and extended drug retention in inflamed synovium simultaneously. In general, nanosized particles are more likely to achieve prolonged circulation and targeted delivery. While drug carriers with larger dimension might be more beneficial for extending drug retention. To balance the conflicting requirements, an inflammation-responsive shape transformable nanoparticle, comprised of amyloid β-derived KLVFF peptide and polysialic acid (PSA), coupled with therapeutic agent dexamethasone (Dex) via an acid-sensitive linker, was fabricated and termed as Dex-KLVFF-PSA (DKPNPs). Under physiological condition, DKPNPs can keep stable nanosized morphology, and PSA shell could endow DKPNPs with long circulation and active targeting to arthritic sites. While in inflamed joints, acidic pH-triggered Dex dissociation or macrophages-induced specific binding with PSA would induce the re-assembly of DKPNPs from nanoparticles to nanofibers. Our results reveal that intravenously injected DKPNPs display prolonged in vivo circulation and preferential distribution in inflamed joints, where DKPNPs undergo shape transition to fibrous structures, leading to declined lymphatic clearance and prolonged efficacy. Overall, our dual-stimulus responsive transformable nanoparticle offers an intelligent solution to achieve enhanced therapeutic efficacy in RA.
Collapse
|
10
|
Li Y, Ye Z, Yang H, Xu Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm Sin B 2022; 12:2624-2639. [PMID: 35755280 PMCID: PMC9214058 DOI: 10.1016/j.apsb.2022.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Lipid nanoparticle (LNP)-based drug delivery systems have become the most clinically advanced non-viral delivery technology. LNPs can encapsulate and deliver a wide variety of bioactive agents, including the small molecule drugs, proteins and peptides, and nucleic acids. However, as the physicochemical properties of small- and macromolecular cargos can vary drastically, every LNP carrier system needs to be carefully tailored in order to deliver the cargo molecules in a safe and efficient manner. Our group applied the combinatorial library synthesis approach and in vitro and in vivo screening strategy for the development of LNP delivery systems for drug delivery. In this Review, we highlight our recent progress in the design, synthesis, characterization, evaluation, and optimization of combinatorial LNPs with novel structures and properties for the delivery of small- and macromolecular therapeutics both in vitro and in vivo. These delivery systems have enormous potentials for cancer therapy, antimicrobial applications, gene silencing, genome editing, and more. We also discuss the key challenges to the mechanistic study and clinical translation of new LNP-enabled therapeutics.
Collapse
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Hanyi Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
11
|
Zhao C, Song W, Ma J, Wang N. Macrophage-derived hybrid exosome-mimic nanovesicles loaded with black phosphorus for multimodal rheumatoid arthritis therapy. Biomater Sci 2022; 10:6731-6739. [DOI: 10.1039/d2bm01274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal anti-inflammatory activity for Rheumatoid arthritis (RA) management.
Collapse
Affiliation(s)
- Chengwu Zhao
- Department of Sports Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wenxia Song
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Jie Ma
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Nan Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Hughes FM, Harper SN, Nosé BD, Allkanjari A, Zheng MT, Jin H, Purves JT. Specialized Pro-resolution Mediators in the bladder; Annexin-A1 normalizes inflammation and bladder dysfunction during bladder outlet obstruction. Am J Physiol Renal Physiol 2021; 321:F443-F454. [PMID: 34396790 DOI: 10.1152/ajprenal.00205.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bladder Outlet Obstruction (BOO) is ultimately experienced by ≈90% of men, most commonly secondary to benign prostatic hyperplasia. Inflammation is a critical driver of BOO pathology in the bladder and can be divided into two critical steps; initiation and resolution. While great strides have been made toward understanding initiation of inflammation in the bladder (through the NLRP3 inflammasome), no studies have examined resolution. Resolution is controlled by 5 classes of compounds known as Specialized Pro-resolving Mediators (SPMs), all of which bind to one or more of 7 different receptors. Using immunocytochemistry, we show the presence of 6 of the known SPM receptors in the bladder of control and BOO rats; the 7th has no rodent homolog. The expression was predominantly localized to the urothelia, often with some expression in the smooth muscle, but little to none in the interstitial cells. We next examined the therapeutic potential of the Annexin-A1 resolution system, also present in control and BOO bladders. Using the peptide mimetic Ac2-26, we blocked inflammation-initiating pathways (NLRP3 activation), diminished BOO-induced inflammation (Evans blue dye extravasation), and normalized bladder dysfunction (urodynamics). Excitingly, Ac2-26 also promoted faster and more complete functional recovery after surgical de-obstruction. Together, the results demonstrate that the bladder expresses a wide variety of potential pro-resolving pathways and that modulation of just one of these pathways can alleviate many detrimental aspects of BOO and speed recovery after de-obstruction. This work establishes a precedent for future studies evaluating SPM effectiveness in resolving the many conditions associated with bladder inflammation.
Collapse
Affiliation(s)
- Francis M Hughes
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Shelby N Harper
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brent D Nosé
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Armand Allkanjari
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Michael T Zheng
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Huixia Jin
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - J Todd Purves
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|