1
|
Sivakumar PM, Zarepour A, Akther S, Perumal G, Khosravi A, Balasekar P, Zarrabi A. Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance. Int J Biol Macromol 2024:139211. [PMID: 39732249 DOI: 10.1016/j.ijbiomac.2024.139211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity. This review underscores the significance of anionic polysaccharides as essential components of the evolving landscape of cancer therapy and theranostics. These polymers can be tailored to carry a wide range of therapeutic cargo, including chemotherapeutic agents, nucleic acids, and imaging agents. Their negative charge enables electrostatic interactions with positively charged drugs and facilitates the formation of stable nanoparticles, liposomes, or hydrogels for controlled drug release. Additionally, their hydrophilic nature aids in prolonging circulation time, reducing drug degradation, and minimizing off-target effects. Besides, some of them could act as targeting agents or therapeutic compounds that lead to improved therapeutic performance. This review offers valuable information for researchers, clinicians, and biomedical engineers. It provides insights into the recent progress in the applications of anionic polysaccharide-based delivery platforms in cancer theranostics to transform patient outcomes.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| | - Sohail Akther
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK.
| | - Govindaraj Perumal
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Premkumar Balasekar
- Department of Pharmacology, K.K. College of Pharmacy, Affiliated to The Tamilnadu Dr. M.G.R. Medical University, Gerugambakkam 600128, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
2
|
Wang T, Du M, Yuan Z, Guo J, Chen Z. Multi-functional nanosonosensitizer-engineered bacteria to overcome tumor hypoxia for enhanced sonodynamic therapy. Acta Biomater 2024; 189:519-531. [PMID: 39395706 DOI: 10.1016/j.actbio.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Ultrasound-triggered sonodynamic therapy (SDT), with high safety and acceptance, has become a promising tumor treatment. However, the dense stroma, hypoxic microenvironment of tumor, and the unpredictable treatment timing limit the effectiveness of sonosensitizers and the antitumor therapeutic effect. Thus, it is crucial to develop an imaging-guided sensitization strategy for hypoxic tumor sonosensitization to improve the efficacy of SDT. METHODS In this study, we developed a biohybrid system CB@HPP, which genetically engineered bacteria to express catalase (CB) and modified nanosonosensitizers (HPP) to the surface of these bacteria. Tumor hypoxia relief, tumor targeting, biocompatibility, and antitumor efficacy were evaluated through in vitro and in vivo experiments. In addition, the photoacoustic (PA), ultrasound (US), and fluorescence (FL) imaging effects of CB@HPP were evaluated in vivo and in vitro. RESULTS After intravenous injection, CB@HPP was able to target tumor tissue. CB@HPP possessed efficient catalase activity and successfully degraded hydrogen peroxide to produce oxygen. Increased oxygen levels relief intratumoral hypoxia, thereby enhancing CB@HPP-mediated. In addition, CB@HPP showed FL/PA/US multimodal imaging capabilities, which reflects the aggregation effect of CB@HPP in the tumor and suggest the timing of treatment. CONCLUSION The biohybrid system CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT. STATEMENT OF SIGNIFICANCE This study developed a sensitizing SDT strategy for imaging-guided drug-targeted delivery and in situ oxygen production. We designed a biohybrid system CB@HPP, which was hybridized by the engineered bacteria with catalytic oxygen production and nanosonosensitizer with multimodal imaging capability. CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, University of South China, Changsha, PR China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, University of South China, Changsha, PR China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, PR China
| | - Jintong Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, PR China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, University of South China, Changsha, PR China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, PR China; Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China.
| |
Collapse
|
3
|
Yang N, Li W, Qian Z, Tan X, Liu Z, Feng F, Liu L, Ge L. Trident-inspired fucoidan-based armor-piercing microcapsule for programmed acute pulmonary embolism treatment. Colloids Surf B Biointerfaces 2024; 245:114323. [PMID: 39442409 DOI: 10.1016/j.colsurfb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary embolism remains the third leading cause of human mortality after malignant tumors and myocardial infarction. Commonly available thrombolytic therapeutic agents suffer from the limitations of very short half-life, inadequate targeting, limited clot penetration, and a propensity for severe bleeding. Inspired by the trident, we developed the armor-piercing microcapsule (MC), fucoidan-urokinase-S-nitrosoglutathione-polydopamine@MC (FUGP@MC), which exhibited a triple combination of photothermal, mechanical and pharmacological thrombolysis for the therapeutic treatment of acute pulmonary embolism (APE). Briefly, the outermost fucoidan layer was utilized for targeting to the APE area. Programmed APE treatment was triggered by near-infrared (NIR) light irradiation. Photothermal thrombolytic therapy was carried out by photothermal conversion of polydopamine. The photothermal conversion broke the S-nitroso bond in S-nitrosoglutathione (GSNO) and produced large amounts of nitric oxide (NO) for mechanical thrombolysis, which subsequently disrupted the interfacial structure of microcapsule to stimulate the release of the urokinase (UK), leading to a triple synergistic thrombolytic effect. The results demonstrated that the embolization residual rate of FUGP@MC (contained ≈ 1452.5 IU/kg UK) group was significantly lower than that of UK (10,000 IU/kg) group (6.35 % VS 16.78 %). Remarkably, FUGP@MC demonstrated a reliable in vivo biosafety proficiency. In summary, trident-inspired armor-piercing microcapsule FUGP@MC reveals a potential avenue for advancing pulmonary embolism therapeutics and promises to be a safer alternative candidate to current drug approaches.
Collapse
Affiliation(s)
- Ning Yang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Weikun Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zhicheng Qian
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xin Tan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zonghao Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, 225 Changhai Road, Shanghai 200438, PR China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China.
| | - Liqin Ge
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Advanced Ocean Institute of Southeast University, Nantong 226019, PR China.
| |
Collapse
|
4
|
Fang S, Zheng L, Shu GF, Xiaoxiao C, Guo X, Ding Y, Yang W, Chen J, Zhao Z, Tu J, Chen M, Ji JS. Multiple Immunomodulatory Strategies Based on Targeted Regulation of Proprotein Convertase Subtilisin/Kexin Type 9 and Immune Homeostasis against Hepatocellular Carcinoma. ACS NANO 2024; 18:8811-8826. [PMID: 38466366 DOI: 10.1021/acsnano.3c11775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Immunotherapy is the most promising systemic therapy for hepatocellular carcinoma. However, the outcome remains poor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a role in altering cell-surface protein levels, potentially undermining the efficacy of immunotherapy against tumors. This highlights its potential as a target for antitumor therapy. Herein, CaCO3-based nanoparticles coencapsulated with DOX, an immunogenic cell death (ICD) inducer, and evolocumab was developed to enhanced the efficacy of immunotherapy. The obtained DOX/evolocumab-loaded CaCO3 nanoparticle (named DECP) exhibits a good capacity of acid neutralization and causes ICD of cancer cells. In addition, DECP is able to evaluate the cell-surface level of MHC-I, a biomarker that correlates positively with patients' overall survival. Upon intravenous injection, DECP accumulates within the tumor site, leading to growth inhibition of hepa1-6 bearing subcutaneous tumors. Specifically, DECP treatment causes augmented ratios of matured dendritic cells, tumor-infiltrating CD8+ T cells and natural killing cells, while concurrently depleting Foxp3+ regulatory T cells. Peritumoral delivery of DECP enhances the immune response of distant tumors and exhibits antitumor effects when combined with intravenous αPD-L1 therapy in a bilateral tumor model. This study presents CaCO3-based nanoparticles with multiple immunomodulatory strategies against hepatocellular carcinoma by targeting PCSK9 inhibition and modulating immune homeostasis in the unfavorable TME.
Collapse
Affiliation(s)
- Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Gao-Feng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Chen Xiaoxiao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Xiaoju Guo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Yiming Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Wenjing Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jiale Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jian-Song Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| |
Collapse
|
5
|
Li Y, Qi H, Geng Y, Li L, Cai X. Research progress of organic photothermal agents delivery and synergistic therapy systems. Colloids Surf B Biointerfaces 2024; 234:113743. [PMID: 38215604 DOI: 10.1016/j.colsurfb.2024.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
Cancer is currently one of the leading causes of mortality worldwide. Due to the inevitable shortcomings of conventional treatments, photothermal therapy (PTT) has attracted great attention as an emerging and non-invasive cancer treatment method. Photothermal agents (PTAs) is a necessary component of PTT to play its role. It accumulates at the tumor site through appropriate methods and converts the absorbed light energy into heat energy effectively under near-infrared light irradiation, thus increasing the temperature of the tumor area and facilitating ablation of the tumor cells. Compared to inorganic photothermal agents, which have limitations such as non-degradability and potential long-term toxicity in vivo, organic photothermal agents exhibit excellent biocompatibility and biodegradability, thus showing promising prospects for the application of PTT in cancer treatment. And these organic photothermal agents can also be engineered into nanoparticles to improve their water solubility, extend their circulation time in vivo, and specifically target tumors. Moreover, further combination of PTT with other treatment methods can effectively enhance the efficacy of cancer treatment and alleviate the side effects associated with single treatments. This article briefly introduces several common types of organic photothermal agents and their nanoparticles, and reviews the applications of PTT based on organic photothermal agents in combination with chemotherapy, photodynamic therapy, chemodynamic therapy, immunotherapy, and multimodal combination therapy for tumor treatment, which expands the ideas and methods in the field of tumor treatment.
Collapse
Affiliation(s)
- Yuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Haolong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yingjie Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
6
|
Singh S, Pal K. Actively targeted gold-polydopamine (PDA@Au) nanocomplex for sequential drug release and combined synergistic chemo-photothermal therapeutic effects. Int J Pharm 2023; 645:123374. [PMID: 37673278 DOI: 10.1016/j.ijpharm.2023.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Multifunctional nanoparticles for treatment in cancer are getting more and more attention recently. In this study, we employed a novel polydopamine (PDA) framework-based gold nanoparticles as a carrier of an antimetabolite drug, 5-Fluorouracil (5-FU). Folic acid (FA) was embellished onto the surface of nanoparticle imparting the nanosystem with remarkable tumor-targeting abilities through its precise binding with FA receptor that is notably overexpressed in breast cancer cells. PDA served as a photothermal treatment (PTT) agent and a gatekeeper to regulate drug release since it is highly pH-sensitive and might lengthen the residency period while simultaneously enhancing water solubility and biological compatibility of nanomaterials. Gold nanoparticles (Au NPs) end up serving as both a drug delivery platform and a source of substantial photothermal effects, culminating in synergistically coupled chemo-photothermal therapy. The PDA@Au@FA nanocomplex, loaded with 5-FU, is biocompatible, features strong NIR absorption and photothermal conversion, and can control drug release in pH/NIR dual response environment. The cell viability in PDA@Au@5-FU-FA group with NIR irradiation in 48 h was only 20.1 ± 2.6%. In addition, apoptosis staining experiments revealed greater cellular uptake of PDA@Au@5-FU-FA by MCF-7 cells. Therefore, PDA@Au@5-FU-FA nanocomplex that we postulated herein may be a potential contender for effective curative treatment for breast cancer.
Collapse
Affiliation(s)
- Swati Singh
- Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kaushik Pal
- Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India; Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
7
|
Chen BY, Hong SY, Wang HM, Shi Y, Wang P, Wang XJ, Jiang QY, Yang KD, Chen W, Xu XL. The subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles. Part Fibre Toxicol 2023; 20:38. [PMID: 37807046 PMCID: PMC10560437 DOI: 10.1186/s12989-023-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, mesoporous nanomaterials with widespread applications have attracted great interest in the field of drug delivery due to their unique structure and good physiochemical properties. As a biomimetic nanomaterial, mesoporous polydopamine (MPDA) possesses both a superior nature and good compatibility, endowing it with good clinical transformation prospects compared with other inorganic mesoporous nanocarriers. However, the subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles remain uncertain. Herein, we prepared MPDAs by a soft template method and evaluated their primary physiochemical properties and metabolite toxicity, as well as potential mechanisms. The results demonstrated that MPDA injection at low (3.61 mg/kg) and medium doses (10.87 mg/kg) did not significantly change the body weight, organ index or routine blood parameters. In contrast, high-dose MPDA injection (78.57 mg/kg) is associated with disturbances in the gut microbiota, activation of inflammatory pathways through the abnormal metabolism of bile acids and unsaturated fatty acids, and potential oxidative stress injury. In sum, the MPDA dose applied should be controlled during the treatment. This study first provides a systematic evaluation of metabolite toxicity and related mechanisms for MPDA-based nanoparticles, filling the gap between their research and clinical transformation as a drug delivery nanoplatform.
Collapse
Affiliation(s)
- Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Si-Ying Hong
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Han-Min Wang
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Yi Shi
- ICU, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Peng Wang
- ICU, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Xiao-Juan Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, PR China
| | - Qian-Yang Jiang
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Ke-Da Yang
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China.
| | - Wei Chen
- ICU, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China.
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Jiang Z, Jiang Z, Jiang Y, Cheng Y, Yao Q, Chen R, Kou L. Fe-involved nanostructures act as photothermal transduction agents in cancer photothermal therapy. Colloids Surf B Biointerfaces 2023; 228:113438. [PMID: 37421763 DOI: 10.1016/j.colsurfb.2023.113438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Cancer, a disease notorious for its difficult therapy regimen, has long puzzled researchers. Despite attempts to cure cancer using surgery, chemotherapy, radiotherapy, and immunotherapy, their effectiveness is limited. Recently, photothermal therapy (PTT), a rising strategy, has gained attention. PTT can increase the surrounding temperature of cancer tissues and cause damage to them. Fe is widely used in PTT nanostructures due to its strong chelating ability, good biocompatibility, and the potential to induce ferroptosis. In recent years, many nanostructures incorporating Fe3+ have been developed. In this article, we summarize PTT nanostructures containing Fe and introduce their synthesis and therapy strategy. However, PTT nanostructures containing Fe are still in their infancy, and more effort must be devoted to improving their effectiveness so that they can eventually be used in clinics.
Collapse
Affiliation(s)
- Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Zhikai Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China.
| |
Collapse
|
9
|
Chen B, Mei L, Fan R, Chuan D, Ren Y, Mu M, Chen H, Zou B, Guo G. Polydopamine-coated i-motif DNA/Gold nanoplatforms for synergistic photothermal-chemotherapy. Asian J Pharm Sci 2023; 18:100781. [PMID: 36818397 PMCID: PMC9929200 DOI: 10.1016/j.ajps.2023.100781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
The combination of photothermal therapy with chemotherapy has gradually developed into promising cancer therapy. Here, a synergistic photothermal-chemotherapy nanoplatform based on polydopamine (PDA)-coated gold nanoparticles (AuNPs) were facilely achieved via the in situ polymerization of dopamine (DA) on the surface of AuNPs. This nanoplatform exhibited augmented photothermal conversion efficiency and enhanced colloidal stability in comparison with uncoated PDA shell AuNPs. The i-motif DNA nanostructure was assembled on PDA-coated AuNPs, which could be transformed into a C-quadruplex structure under an acidic environment, showing a characteristic pH response. The PDA shell served as a linker between the AuNPs and the i-motif DNA nanostructure. To enhance the specific cellular uptake, the AS1411 aptamer was introduced to the DNA nanostructure employed as a targeting ligand. In addition, Dox-loaded NPs (DAu@PDA-AS141) showed the pH/photothermal-responsive release of Dox. The photothermal effect of DAu@PDA-AS141 elicited excellent photothermal performance and efficient cancer cell inhibition under 808 nm near-infrared (NIR) irradiation. Overall, these results demonstrate that the DAu@PDA-AS141 nanoplatform shows great potential in synergistic photothermal-chemotherapy.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangmei Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China,Corresponding author.
| |
Collapse
|