1
|
Jia M, Ren W, Wang M, Liu Y, Wang C, Zhang Z, Xu M, Ding N, Li C, Yang H. Surface saturation of drug-loaded hollow manganese dioxide nanoparticles with human serum albumin for treating rheumatoid arthritis. Drug Deliv 2024; 31:2380538. [PMID: 39044468 PMCID: PMC11271085 DOI: 10.1080/10717544.2024.2380538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease accompanied by energy depletion and accumulation of reactive oxygen species (ROS). Inorganic nanoparticles (NPs) offer great promise for the treatment of RA because they mostly have functions beyond being drug carriers. However, conventional nanomaterials become coated with a protein corona (PC) or lose their cargo prematurely in vivo, reducing their therapeutic efficacy. To avoid these problems, we loaded methotrexate (MTX) into hollow structured manganese dioxide nanoparticles (H-MnO2 NPs), then coated them with a 'pseudo-corona' of human serum albumin (HSA) at physiological concentrations to obtain HSA-MnO2@MTX NPs. Efficacy of MTX, MnO2@MTX, and HSA-MnO2@MTX NPs was compared in vitro and in vivo. Compared to MnO2@MTX, HSA-coated NPs were taken up better by lipopolysaccharide-activated RAW264.7 and were more effective at lowering levels of pro-inflammatory cytokines and preventing ROS accumulation. HSA-MnO2@MTX NPs were also more efficient at blocking the proliferation and migration of fibroblast-like synoviocytes from rats with collagen-induced arthritis. In this rat model, HSA-MnO2@MTX NPs showed better biodistribution than other treatments, specifically targeting the ankle joint. Furthermore, HSA-MnO2@MTX NPs reduced swelling in the paw, regulated pro-inflammatory cytokine production, and limited cartilage degradation and signs of inflammation. These results establish the therapeutic potential of HSA-MnO2@MTX NPs against RA.
Collapse
Affiliation(s)
- Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
- Nanchong Institute for Food and Drug Control, Nanchong, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Minrui Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Nianhui Ding
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Hong Yang
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Wisdom EC, Lamont A, Martinez H, Rockovich M, Lee W, Gilchrist KH, Ho VB, Klarmann GJ. An Exosome-Laden Hydrogel Wound Dressing That Can Be Point-of-Need Manufactured in Austere and Operational Environments. Bioengineering (Basel) 2024; 11:804. [PMID: 39199762 PMCID: PMC11351238 DOI: 10.3390/bioengineering11080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Skin wounds often form scar tissue during healing. Early intervention with tissue-engineered materials and cell therapies may promote scar-free healing. Exosomes and extracellular vesicles (EV) secreted by mesenchymal stromal cells (MSC) are believed to have high regenerative capacity. EV bioactivity is preserved after lyophilization and storage to enable use in remote and typically resource-constrained environments. We developed a bioprinted bandage containing reconstituted EVs that can be fabricated at the point-of-need. An alginate/carboxymethyl cellulose (CMC) biomaterial ink was prepared, and printability and mechanical properties were assessed with rheology and compression testing. Three-dimensional printed constructs were evaluated for Young's modulus relative to infill density and crosslinking to yield material with stiffness suitable for use as a wound dressing. We purified EVs from human MSC-conditioned media and characterized them with nanoparticle tracking analysis and mass spectroscopy, which gave a peak size of 118 nm and identification of known EV proteins. Fluorescently labeled EVs were mixed to form bio-ink and bioprinted to characterize EV release. EV bandages were bioprinted on both a commercial laboratory bioprinter and a custom ruggedized 3D printer with bioprinting capabilities, and lyophilized EVs, biomaterial ink, and thermoplastic filament were deployed to an austere Arctic environment and bioprinted. This work demonstrates that EVs can be bioprinted with an alginate/CMC hydrogel and released over time when in contact with a skin-like substitute. The technology is suitable for operational medical applications, notably in resource-limited locations, including large-scale natural disasters, humanitarian crises, and combat zones.
Collapse
Affiliation(s)
- E. Cate Wisdom
- USU Center for Biotechnology (4DBio3), Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA (K.H.G.); (V.B.H.); (G.J.K.)
- The Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402, USA
| | - Andrew Lamont
- USU Center for Biotechnology (4DBio3), Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA (K.H.G.); (V.B.H.); (G.J.K.)
- The Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402, USA
| | - Hannah Martinez
- The United States Air Force Academy, 2304 Cadet Drive, USAF Academy, CO 80840, USA
- School of Medicine, Uniformed Service University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Michael Rockovich
- The United States Naval Academy, 121 Blake Rd., Annapolis, MD 21402, USA
| | - Woojin Lee
- The United States Military Academy, 606 Thayer Rd., West Point, NY 10996, USA
| | - Kristin H. Gilchrist
- USU Center for Biotechnology (4DBio3), Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA (K.H.G.); (V.B.H.); (G.J.K.)
- The Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402, USA
| | - Vincent B. Ho
- USU Center for Biotechnology (4DBio3), Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA (K.H.G.); (V.B.H.); (G.J.K.)
| | - George J. Klarmann
- USU Center for Biotechnology (4DBio3), Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA (K.H.G.); (V.B.H.); (G.J.K.)
- The Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402, USA
| |
Collapse
|
3
|
Zhang G, Song D, Ma R, Li M, Liu B, He Z, Fu Q. Artificial mucus layer formed in response to ROS for the oral treatment of inflammatory bowel disease. SCIENCE ADVANCES 2024; 10:eado8222. [PMID: 39058786 PMCID: PMC11277472 DOI: 10.1126/sciadv.ado8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The artificial mucus layer, such as hydrogels, used to repair the damaged intestinal barrier, is a promising treatment for inflammatory bowel disease (IBD). However, the currently reported hydrogel-based artificial barriers are administered via rectal injection, causing unnecessary discomfort to patients. Herein, we report an oral hydrogel precursor solution based on thiol-modified hyaluronic acid (HASH). Owing to the reactive oxygen species (ROS)-responsive gelling behavior, our precursor solution formed an artificial mucus coating over the inflamed regions of the intestines, blocking microbial invasion and reducing abnormally activated immune responses. Notably, HASH also modulated the gut microbiota, including increasing the diversity and enhancing the abundance of short-chain fatty acid-associated bacteria, which play a key role in gut homeostasis. We believe that the ROS-responsive artificial mucus layer is a promising strategy for the oral treatment of IBD.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dandan Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
4
|
Wang Y, Ma H, Zhang X, Xiao X, Yang Z. The Increasing Diagnostic Role of Exosomes in Inflammatory Diseases to Leverage the Therapeutic Biomarkers. J Inflamm Res 2024; 17:5005-5024. [PMID: 39081872 PMCID: PMC11287202 DOI: 10.2147/jir.s475102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory diseases provide substantial worldwide concerns, affecting millions of people and healthcare systems by causing ongoing discomfort, diminished quality of life, and increased expenses. In light of the progress made in treatments, the limited effectiveness and negative side effects of present pharmaceuticals need a more comprehensive comprehension of the underlying processes in order to develop more precise remedies. Exosomes, which are tiny vesicles that play a vital role in cell communication, have been identified as prospective vehicles for effective delivery of anti-inflammatory medicines, immunomodulators, and gene treatments. Vesicles, which are secreted by different cells, have a crucial function in communicating between cells. This makes them valuable in the fields of diagnostics and therapies, particularly for inflammatory conditions. Exosomes have a role in regulating the immune system, transporting cytokines, and influencing cell signaling pathways associated with inflammation. They consist of proteins, lipids, and genetic information that have an impact on immune responses and inflammation. Scientists are now investigating exosomes as biomarkers for inflammatory disease. This review article aims to develop non-invasive diagnostic techniques with improved sensitivity and specificity. Purpose of this review is a thorough examination of exosomes in pharmacology, specifically emphasizing their origin, contents, and functions, with the objective of enhancing diagnostic and therapeutic strategies for inflammatory conditions. Gaining a comprehensive understanding of the intricate mechanisms involved in exosome-mediated interactions and their impact on immune responses is of utmost importance in order to devise novel approaches for tackling inflammatory disease and enhancing patient care.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xiaohua Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xia Xiao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| |
Collapse
|
5
|
Liang L, Deng Y, Ao Z, Liao C, Tian J, Li C, Yu X. Recent progress in biomimetic nanomedicines based on versatile targeting strategy for atherosclerosis therapy. J Drug Target 2024; 32:606-623. [PMID: 38656224 DOI: 10.1080/1061186x.2024.2347353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis (AS) is considered to be one of the major causes of cardiovascular disease. Its pathological microenvironment is characterised by increased production of reactive oxygen species, lipid oxides, and excessive inflammatory factors, which accumulate at the monolayer endothelial cells in the vascular wall to form AS plaques. Therefore, intervention in the pathological microenvironment would be beneficial in delaying AS. Researchers have designed biomimetic nanomedicines with excellent biocompatibility and the ability to avoid being cleared by the immune system through different therapeutic strategies to achieve better therapeutic effects for the characteristics of AS. Biomimetic nanomedicines can further enhance delivery efficiency and improve treatment efficacy due to their good biocompatibility and ability to evade clearance by the immune system. Biomimetic nanomedicines based on therapeutic strategies such as neutralising inflammatory factors, ROS scavengers, lipid clearance and integration of diagnosis and treatment are versatile approaches for effective treatment of AS. The review firstly summarises the targeting therapeutic strategy of biomimetic nanomedicine for AS in recent 5 years. Biomimetic nanomedicines using cell membranes, proteins, and extracellular vesicles as carriers have been developed for AS.
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People's Hospital, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Changli Liao
- Science and Technology Department, Southwest Medical University, Luzhou, Sichuan, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Stawarska A, Bamburowicz-Klimkowska M, Runden-Pran E, Dusinska M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int J Mol Sci 2024; 25:6533. [PMID: 38928240 PMCID: PMC11204223 DOI: 10.3390/ijms25126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Mihaela Roxana Cimpan
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ivan Rios-Mondragon
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ireneusz P. Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| |
Collapse
|
7
|
Yang X, Zhang S, Lu J, Chen X, Zheng T, He R, Ye C, Xu J. Therapeutic potential of mesenchymal stem cell-derived exosomes in skeletal diseases. Front Mol Biosci 2024; 11:1268019. [PMID: 38903180 PMCID: PMC11187108 DOI: 10.3389/fmolb.2024.1268019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Skeletal diseases impose a considerable burden on society. The clinical and tissue-engineering therapies applied to alleviate such diseases frequently result in complications and are inadequately effective. Research has shifted from conventional therapies based on mesenchymal stem cells (MSCs) to exosomes derived from MSCs. Exosomes are natural nanocarriers of endogenous DNA, RNA, proteins, and lipids and have a low immune clearance rate and good barrier penetration and allow targeted delivery of therapeutics. MSC-derived exosomes (MSC-exosomes) have the characteristics of both MSCs and exosomes, and so they can have both immunosuppressive and tissue-regenerative effects. Despite advances in our knowledge of MSC-exosomes, their regulatory mechanisms and functionalities are unclear. Here we review the therapeutic potential of MSC-exosomes for skeletal diseases.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Shaodian Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Xiaoling Chen
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Tian Zheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnology 2024; 22:315. [PMID: 38840207 PMCID: PMC11151510 DOI: 10.1186/s12951-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.
Collapse
Affiliation(s)
- Xiaojing Wu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Ying Shi
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
9
|
苑 通, 郭 玉, 张 俊, 樊 赛. [Normal mouse serum alleviates radiation pneumonitis in mice by inhibiting the focal adhesion signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:801-809. [PMID: 38862437 PMCID: PMC11166715 DOI: 10.12122/j.issn.1673-4254.2024.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/05/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To evaluate the therapeutic effect of normal mouse serum on radiation pneumonitis in mice and explore the possible mechanism. METHODS Mouse models of radiation pneumonitis induced by thoracic radiation exposure were given intravenous injections of 100 μL normal mouse serum or normal saline immediately after the exposure followed by injections once every other day for a total of 8 injections. On the 15th day after irradiation, histopathological changes of the lungs of the mice were examined using HE staining, the levels of TNF-α, TGF-β, IL-1α and IL-6 in the lung tissue and serum were detected using ELISA, and the percentages of lymphocytes in the lung tissue were analyzed with flow cytometry. Highth-roughput sequencing of exosome miRNA was carried out to explore the changes in the signaling pathways. The mRNA expression levels of the immune-related genes were detected by qRT-PCR, and the protein expressions of talin-1, tensin2, FAK, vinculin, α-actinin and paxillin in the focal adhesion signaling pathway were detected with Western blotting. RESULTS In the mouse models of radiation pneumonitis, injections of normal mouse serum significantly decreased the lung organ coefficient, lowered the levels of TNF-α, TGF-β, IL-1α and IL-6 in the serum and lung tissues, and ameliorated infiltration of CD45+, CD4+ and Treg lymphocytes in the lung tissue (all P < 0.05). The expression levels of Egfr and Pik3cd genes at both the mRNA and protein levels and the protein expressions of talin-1, tensin2, FAK, vinculin, α?actinin and paxillin were all significantly down-regulated in the mouse models after normal mouse serum treatment. CONCLUSION Normal mouse serum ameliorates radiation pneumonitis in mice by inhibiting the expressions of key proteins in the Focal adhesion signaling pathway.
Collapse
|
10
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
11
|
Sun T, Li M, Liu Q, Yu A, Cheng K, Ma J, Murphy S, McNutt PM, Zhang Y. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front Med 2024; 18:258-284. [PMID: 38216854 PMCID: PMC11283324 DOI: 10.1007/s11684-023-1031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/15/2023] [Indexed: 01/14/2024]
Abstract
Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.
Collapse
Affiliation(s)
- Tianjing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Qi Liu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sean Murphy
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Patrick Michael McNutt
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
12
|
Kong L, Chen S, Huang S, Zheng A, Gao S, Ye J, Hua C. Challenges and opportunities in inflammatory bowel disease: from current therapeutic strategies to organoid-based models. Inflamm Res 2024; 73:541-562. [PMID: 38345635 DOI: 10.1007/s00011-024-01854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an increasingly prevalent global health concern that has garnered substantial attention. However, the underlying mechanisms are still unclear and the current treatments have significant limitations. Intestinal organoids provide an in vitro model to explore the pathogenesis, test the therapeutic effects, and develop regenerative treatments as well as offer the potential to transform drug discovery of IBD. METHODS To advance our understanding of the whole story of IBD spanning from the pathogenesis to the current therapeutic strategies and latest advancements, a comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original articles and reviews related to IBD, organoids, pathogenesis and therapy. RESULTS This review deciphers the etiopathogenesis and the current therapeutic approaches in the treatment of IBD. Notably, critical aspects of intestinal organoids in IBD, such as their potential applications, viability, cell renewal ability, and barrier functionality are highlighted. We also discuss the advances, limitations, and prospects of intestinal organoids for precision medicine. CONCLUSION The latest strides made in research about intestinal organoids help elucidate intricate aspects of IBD pathogenesis, and pave the prospective avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
- Lingjie Kong
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Siyan Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Anzhe Zheng
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
13
|
Song Y, Hu J, Ma C, Liu H, Li Z, Yang Y. Macrophage-Derived Exosomes as Advanced Therapeutics for Inflammation: Current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:1597-1627. [PMID: 38406601 PMCID: PMC10888065 DOI: 10.2147/ijn.s449388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The development of numerous diseases is significantly influenced by inflammation. Macrophage-derived exosomes (M-Exos) play a role in controlling inflammatory reactions in various conditions, including chronic inflammatory pain, hypertension, and diabetes. However, the specific targets and roles of M-Exos in regulating inflammation in diseases remain largely unknown. This review summarizes current knowledge on M-Exos biogenesis and provides updated information on M-Exos' biological function in inflammation modulation. Furthermore, this review highlights the functionalization and engineering strategies of M-Exos, while providing an overview of cutting-edge approaches to engineering M-Exos and advancements in their application as therapeutics for inflammation modulation. Finally, multiple engineering strategies and mechanisms are presented in this review along with their perspectives and challenges, and the potential contribution that M-Exos may have in diseases through the modulation of inflammation is discussed.
Collapse
Affiliation(s)
- Yanjuan Song
- Graduate School, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Jing Hu
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Chunlian Ma
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Hua Liu
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhanghua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Yi Yang
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
14
|
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, Lei L. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology 2024; 22:41. [PMID: 38281957 PMCID: PMC10823703 DOI: 10.1186/s12951-024-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shaohong Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
15
|
Ma F, Zhang S, Akanyibah FA, Zhang W, Chen K, Ocansey DKW, Lyu C, Mao F. Exosome-mediated macrophage regulation for inflammatory bowel disease repair: a potential target of gut inflammation. Am J Transl Res 2023; 15:6970-6987. [PMID: 38186999 PMCID: PMC10767518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a complex condition without a definite cause. During IBD, immune cells such as macrophages release proinflammatory cytokines and chemokines, contributing to intestinal barrier integrity dysfunction. IBD is largely influenced by macrophages, which are classified into subtypes M1 and M2. M1 macrophages have been found to contribute to the development of IBD, whereas M2 macrophages alleviate IBD. Hence, agents that cause increased polarization of the M2 phenotype could help repair IBD. Exosomes, as ubiquitous conveyors of intercellular messages, are involved in immune responses and immune-mediated disease processes. Exosomes and their microRNA (miRNA) from healthy cells have been found to polarize macrophages to M2 to repair IBD due to their anti-inflammatory properties; however, those from inflammatory-driven cells and disease cells promote M1 macrophages to perpetuate IBD. Here, we review the biogenesis, biochemical composition, and sources of exosomes, as well as the roles of exosomes as extracellular vesicles in regulation of macrophages to repair IBD.
Collapse
Affiliation(s)
- Feifei Ma
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Shiheng Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Weibin Zhang
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Kangjing Chen
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
- Directorate of University Health Services, University of Cape CoastCape Coast CC0959347, Ghana
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
16
|
Zhai Z, Cui T, Chen J, Mao X, Zhang T. Advancements in engineered mesenchymal stem cell exosomes for chronic lung disease treatment. J Transl Med 2023; 21:895. [PMID: 38071321 PMCID: PMC10709966 DOI: 10.1186/s12967-023-04729-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic lung diseases include an array of conditions that impact airways and lung structures, leading to considerable societal burdens. Mesenchymal stem cells (MSCs) and their exosomes (MSC-exos) can be used for cell therapy and exhibit a diverse spectrum of anti-inflammatory, antifibrotic, and immunomodulatory properties. Engineered MSC-exos possesses enhanced capabilities for targeted drug delivery, resulting in more potent targeting effects. Through various engineering modifications, these exosomes can exert many biological effects, resulting in specific therapeutic outcomes for many diseases. Moreover, engineered stem cell exosomes may exhibit an increased capacity to traverse physiological barriers and infiltrate protected lesions, thereby exerting their therapeutic effects. These characteristics render them a promising therapeutic agent for chronic pulmonary diseases. This article discusses and reviews the strategies and mechanisms of engineered MSC-exos in the treatment of chronic respiratory diseases based on many studies to provide new solutions for these diseases.
Collapse
Affiliation(s)
- Zhengyao Zhai
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tairong Cui
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jialiang Chen
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xulong Mao
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
17
|
Lee JH, Lötvall J, Cho BS. The Anti-Inflammatory Effects of Adipose Tissue Mesenchymal Stem Cell Exosomes in a Mouse Model of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:16877. [PMID: 38069197 PMCID: PMC10706798 DOI: 10.3390/ijms242316877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic, relapsing inflammatory disorders that affect the gastrointestinal tract, with the primary subtypes being ulcerative colitis (UC) and Crohn's disease (CD). We aimed to evaluate the therapeutic potential of extracellular vesicles released by adipose-tissue-derived mesenchymal stem cells, which we, in this manuscript, call "exosomes" (ASC-EXOs), in a mouse model of IBD. We specifically aimed to determine the effectiveness of different treatment protocols and compare the effects with that of anti-IL-12 p40 monoclonal antibody. The addition of dextran sulfate sodium (DSS) to drinking water induced multiple signs of IBD, including weight loss, soft stool, and bloody feces. ASC-EXOs given by either intraperitoneal (IP) or intravenous (IV) routes resulted in moderate improvement in these signs of IBD. IV ASC-EXOs resulted in significantly reduced body weight loss, improved histopathological scoring, and suppressed the disease activity index (DAI) compared to the IBD control group. Also, a reduction in PCR for pro-inflammatory cytokines was observed. IV ASC treatment resulted in dose-related reduction in IBD signs, including weight loss. An increasing number of injections with ASC-EXOs reduced histopathological scores as well as DAI. Co-administration of ASC-EXOs with anti-IL-12 p40 significantly decreased DAI scores in the ASC-EXO + anti-IL-12 p40 group. In conclusion, ASC-EXOs have potential as a therapeutic agent for IBD, but the route of administration, number of injections, and dosage need to be considered to optimize the effects of ASC-EXO treatment. This study also highlights the potential benefits of combination therapies of ASC-EXOs and anti-IL-12. Our findings pave the way for further studies to unravel the underlying therapeutic mechanisms of ASC-EXOs in IBD treatment.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea; (J.H.L.); (B.S.C.)
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530 Göteborg, Sweden
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea; (J.H.L.); (B.S.C.)
| |
Collapse
|
18
|
Sun M, Yang J, Fan Y, Zhang Y, Sun J, Hu M, Sun K, Zhang J. Beyond Extracellular Vesicles: Hybrid Membrane Nanovesicles as Emerging Advanced Tools for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303617. [PMID: 37749882 PMCID: PMC10646251 DOI: 10.1002/advs.202303617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Extracellular vesicles (EVs), involved in essential physiological and pathological processes of the organism, have emerged as powerful tools for disease treatment owing to their unique natural biological characteristics and artificially acquired advantages. However, the limited targeting ability, insufficient production yield, and low drug-loading capability of natural simplex EVs have greatly hindered their development in clinical translation. Therefore, the establishment of multifunctional hybrid membrane nanovesicles (HMNVs) with favorable adaptability and flexibility has become the key to expanding the practical application of EVs. This timely review summarizes the current progress of HMNVs for biomedical applications. Different HMNVs preparation strategies including physical, chemical, and chimera approaches are first discussed. This review then individually describes the diverse types of HMNVs based on homologous or heterologous cell membrane substances, a fusion of cell membrane and liposome, as well as a fusion of cell membrane and bacterial membrane. Subsequently, a specific emphasis is placed on the highlight of biological applications of the HMNVs toward various diseases with representative examples. Finally, ongoing challenges and prospects of the currently developed HMNVs in clinical translational applications are briefly presented. This review will not only stimulate broad interest among researchers from diverse disciplines but also provide valuable insights for the development of promising nanoplatforms in precision medicine.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yinfeng Zhang
- International Medical CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Jian Sun
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Min Hu
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Ke Sun
- Department of Urinary surgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
19
|
Kim H, Goh YS, Park SE, Hwang J, Kang N, Jung JS, Kim YB, Choi EK, Park KM. Preventive Effects of Exosome-Rich Conditioned Medium From Amniotic Membrane-Derived Mesenchymal Stem Cells for Diabetic Retinopathy in Rats. Transl Vis Sci Technol 2023; 12:18. [PMID: 37610767 PMCID: PMC10461646 DOI: 10.1167/tvst.12.8.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is an important disease that causes vision loss in many diabetic patients. Stem cell therapy has been attempted for treatment of this disease; however, it has some limitations. This study aimed to evaluate the preventive efficacy of exosome-rich conditioned medium (ERCM) derived from amniotic membrane stem cells for DR in rats. Methods Twenty-eight 8-week-old male Sprague-Dawley rats were divided into three groups: group 1, normal control (Con) group; group 2, diabetes mellitus (DM) group; and group 3, DM with ERCM-treated (DM-ERCM) group. DM was induced by intraperitoneal injection of streptozotocin. The DM-ERCM group received ERCM containing 1.2 × 10⁹ exosomes into subconjunctival a total of four times every 2 weeks. Results On electroretinogram, the DM-ERCM group had significantly higher b-wave and flicker amplitudes than those in the DM group. In fundoscopy, retinal vascular attenuation was found in both the DM and DM-ERCM groups; however, was more severe in the DM group. On histology, the ganglion cell and nerve fiber layer rates of the total retinal layer significantly increased in the DM group compared with the Con group, whereas the DM-ERCM group showed no significant difference compared with the Con group. Cataracts progressed significantly more in the DM group than that in the DM-ERCM group and there was no uveitis in the DM-ERCM group. Conclusions Subconjunctival ERCM delayed the progression of DR and cataracts and significantly reduced the incidence of uveitis. Translational Relevance Our study shows the clinical potential of minimally invasive exosome-rich conditioned medium treatment to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Hyemin Kim
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Yeong-Seok Goh
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Eun Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jiyi Hwang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Nanyoung Kang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ji Seung Jung
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Yun-Bae Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
20
|
Ivosevic Z, Ljujic B, Pavlovic D, Matovic V, Gazdic Jankovic M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: New Soldiers in the War on Immune-Mediated Diseases. Cell Transplant 2023; 32:9636897231207194. [PMID: 37882092 PMCID: PMC10605687 DOI: 10.1177/09636897231207194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory diseases are a group of debilitating disorders with varying degrees of long-lasting functional impairment of targeted system. New therapeutic agents that will attenuate on-going inflammation and, at the same time, promote regeneration of injured organ are urgently needed for the treatment of autoimmune and inflammatory disorders. During the last decade numerous studies have demonstrated that crucial therapeutic benefits of mesenchymal stem cells (MSCs) in inflammatory diseases are based on the effects of MSC-produced paracrine mediators and not on the activity of engrafted cells themselves. Thus, to overcome the limitations of stem cell transplantation, MSC-derived extracellular vesicles (MSC-EVs) have been rigorously investigated, as a promising cell-free pharmaceutical component. In this review, we focus on the mechanisms of MSC-EV covering the current knowledge on their potential therapeutic applications for immune-mediated diseases.
Collapse
Affiliation(s)
- Zeljko Ivosevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Matovic
- Cardiology Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|