1
|
Zhong Q, Shao L, Yao Y, Chen S, Lv X, Liu Z, Zhu S, Yan Z. Urine-based SERS and multivariate statistical analysis for identification of non-muscle-invasive bladder cancer and muscle-invasive bladder cancer. Anal Bioanal Chem 2024:10.1007/s00216-024-05595-0. [PMID: 39414645 DOI: 10.1007/s00216-024-05595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Bladder cancer (BC) is an epidemiological urologic malignancy that continues to increase each year. Early diagnosis and prognosis monitoring is always significant in clinical practice, especially in distinguishing non-muscle-invasive bladder cancer (NMIBC) from muscle-invasive bladder cancer (MIBC), due to the various depths of tumor invasion related to different therapeutic schedules and recurrence rates. Common diagnostic approaches are too invasive or generally inefficient in accuracy and specificity. In this work, a totally non-invasive and cost-effective method is established by investigating urine samples using surface-enhanced Raman spectroscopy (SERS) and multivariate statistical analysis. The comparison of urine SERS spectra shows the intensities of characteristic peaks for DNA/RNA, hypoxanthine, albumin, D-( +)-galactosamine, fatty acids, and some amino acids are distinguishable in BC occurrence and invasion progression. A PLS-LDA-based two-step binary classification scheme is performed on urine SERS spectra and the diagnostic accuracies were 97.7% and 96.3% for healthy individuals versus BC patients and NMIBC versus MIBC patients, respectively. Moreover, the impact of urine SERS spectral lengths in reaching high-precision recognition of BC is investigated. The results show that the Raman peaks at 803, 893, 1139, 1375, and 1466 cm-1 play an essential role in correctly categorizing healthy control, NMIBC, and MIBC patients, and SERS spectra ranges from 400 to 1600 cm-1 are enough for this identification task. These findings provide a sensitive, label-free, rapid, and totally non-invasive way for assessment of invasion depth of BC to its early diagnosis and prognosis monitoring, as well as valuable insights for selecting reasonable spectral range to enhance the measurement efficiency especially in large-scale sample datasets.
Collapse
Affiliation(s)
- Qingshan Zhong
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo, 315211, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lei Shao
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo, 315211, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yudong Yao
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo, 315211, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Xiuyi Lv
- Department of Urology, the First Affiliated Hospital of Ningbo University, Ningbo, 315211, China
| | - Zhihan Liu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Shanshan Zhu
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo, 315211, China.
- Health Science Center, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Zejun Yan
- Department of Urology, the First Affiliated Hospital of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Bedore S, van der Eerden J, Boghani F, Patel SJ, Yassin S, Aguilar K, Lokeshwar VB. Protein-Based Predictive Biomarkers to Personalize Neoadjuvant Therapy for Bladder Cancer-A Systematic Review of the Current Status. Int J Mol Sci 2024; 25:9899. [PMID: 39337385 PMCID: PMC11432686 DOI: 10.3390/ijms25189899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The clinical outcome of patients with muscle-invasive bladder cancer (MIBC) is poor despite the approval of neoadjuvant chemotherapy or immunotherapy to improve overall survival after cystectomy. MIBC subtypes, immune, transcriptome, metabolomic signatures, and mutation burden have the potential to predict treatment response but none have been incorporated into clinical practice, as tumor heterogeneity and lineage plasticity influence their efficacy. Using the PRISMA statement, we conducted a systematic review of the literature, involving 135 studies published within the last five years, to identify studies reporting on the prognostic value of protein-based biomarkers for response to neoadjuvant therapy in patients with MIBC. The studies were grouped based on biomarkers related to molecular subtypes, cancer stem cell, actin-cytoskeleton, epithelial-mesenchymal transition, apoptosis, and tumor-infiltrating immune cells. These studies show the potential of protein-based biomarkers, especially in the spatial context, to reduce the influence of tumor heterogeneity on a biomarker's prognostic capability. Nevertheless, currently, there is little consensus on the methodology, reagents, and the scoring systems to allow reliable assessment of the biomarkers of interest. Furthermore, the small sample size of several studies necessitates the validation of potential prognostic biomarkers in larger multicenter cohorts before their use for individualizing neoadjuvant therapy regimens for patients with MIBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (S.B.); (J.v.d.E.); (S.J.P.); (S.Y.); (K.A.)
| |
Collapse
|
3
|
Arendowski A. Matrix- and Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Methods for Urological Cancer Biomarker Discovery-Metabolomics and Lipidomics Approaches. Metabolites 2024; 14:173. [PMID: 38535333 PMCID: PMC10972240 DOI: 10.3390/metabo14030173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 11/12/2024] Open
Abstract
Urinary tract cancers, including those of the bladder, the kidneys, and the prostate, represent over 12% of all cancers, with significant global incidence and mortality rates. The continuous challenge that these cancers present necessitates the development of innovative diagnostic and prognostic methods, such as identifying specific biomarkers indicative of cancer. Biomarkers, which can be genes, proteins, metabolites, or lipids, are vital for various clinical purposes including early detection and prognosis. Mass spectrometry (MS), particularly soft ionization techniques such as electrospray ionization (ESI) and laser desorption/ionization (LDI), has emerged as a key tool in metabolic profiling for biomarker discovery, due to its high resolution, sensitivity, and ability to analyze complex biological samples. Among the LDI techniques, matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) should be mentioned. While MALDI methodology, which uses organic compounds as matrices, is effective for larger molecules, SALDI, based on the various types of nanoparticles and nanostructures, is preferred for smaller metabolites and lipids due to its reduced spectral interference. This study highlights the application of LDI techniques, along with mass spectrometry imaging (MSI), in identifying potential metabolic and lipid biomarkers for urological cancers, focusing on the most common bladder, kidney, and prostate cancers.
Collapse
Affiliation(s)
- Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Pereira F, Domingues MR, Vitorino R, Guerra IMS, Santos LL, Ferreira JA, Ferreira R. Unmasking the Metabolite Signature of Bladder Cancer: A Systematic Review. Int J Mol Sci 2024; 25:3347. [PMID: 38542319 PMCID: PMC10970247 DOI: 10.3390/ijms25063347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Bladder cancer (BCa) research relying on Omics approaches has increased over the last few decades, improving the understanding of BCa pathology and contributing to a better molecular classification of BCa subtypes. To gain further insight into the molecular profile underlying the development of BCa, a systematic literature search was performed in PubMed until November 2023, following the PRISMA guidelines. This search enabled the identification of 25 experimental studies using mass spectrometry or nuclear magnetic resonance-based approaches to characterize the metabolite signature associated with BCa. A total of 1562 metabolites were identified to be altered by BCa in different types of samples. Urine samples displayed a higher likelihood of containing metabolites that are also present in bladder tumor tissue and cell line cultures. The data from these comparisons suggest that increased concentrations of L-isoleucine, L-carnitine, oleamide, palmitamide, arachidonic acid and glycoursodeoxycholic acid and decreased content of deoxycytidine, 5-aminolevulinic acid and pantothenic acid should be considered components of a BCa metabolome signature. Overall, molecular profiling of biological samples by metabolomics is a promising approach to identifying potential biomarkers for early diagnosis of different BCa subtypes. However, future studies are needed to understand its biological significance in the context of BCa and to validate its clinical application.
Collapse
Affiliation(s)
- Francisca Pereira
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - M. Rosário Domingues
- CESAM, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês M. S. Guerra
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
- CESAM, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - Rita Ferreira
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
| |
Collapse
|
5
|
Nizioł J, Ossoliński K, Płaza-Altamer A, Kołodziej A, Ossolińska A, Ossoliński T, Krupa Z, Ruman T. Untargeted metabolomics of bladder tissue using liquid chromatography and quadrupole time-of-flight mass spectrometry for cancer biomarker detection. J Pharm Biomed Anal 2024; 240:115966. [PMID: 38217999 DOI: 10.1016/j.jpba.2024.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Bladder cancer (BC) ranks among the most common cancers globally, with an increasing occurrence, particularly in developed nations. Utilizing tissue metabolomics presents a promising strategy for identifying potential biomarkers for cancer detection. In this study, we utilized ultra-high-performance liquid chromatography coupled with ultra-high-resolution mass spectrometry (UHPLC-UHRMS), incorporating both C18-silica and HILIC columns, to comprehensively analyze both polar and non-polar metabolite profiles in tissue samples from 99 patients with bladder cancer. By utilizing an untargeted approach with external validation, we identified twenty-five tissue metabolites that hold promise as potential indicators of BC. Furthermore, twenty-five characteristic tissue metabolites that exhibit discriminatory potential across bladder cancer tumor grades, as well as thirty-nine metabolites that display correlations with tumor stages were presented. Receiver operating characteristics analysis demonstrated high predictive power for all types of metabolomics data, with area under the curve (AUC) values exceeding 0.966. Notably, this study represents the first report in which human bladder normal tissues adjacent to cancerous tissues were analyzed using UHPLC-UHRMS. These findings suggest that the metabolite markers identified in this investigation could serve as valuable tools for the detection and monitoring of bladder cancer stages and grades.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland.
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Aneta Płaza-Altamer
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Artur Kołodziej
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences at the Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| |
Collapse
|