1
|
Treit S, Jeffery D, Beaulieu C, Emery D. Radiological Findings on Structural Magnetic Resonance Imaging in Fetal Alcohol Spectrum Disorders and Healthy Controls. Alcohol Clin Exp Res 2020; 44:455-462. [PMID: 31840819 DOI: 10.1111/acer.14263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) describe a range of physical, behavioral, and cognitive impairments stemming from prenatal alcohol exposure (PAE). Although case studies have demonstrated striking visible brain abnormalities in humans (enlargement of the lateral ventricles, thinning or absence of the corpus callosum, etc.), few studies have systematically determined how these radiological findings generalize to the wider population of individuals living with FASD. METHODS This study examines rates of structural brain anomalies on magnetic resonance imaging (MRI) as determined by 2 radiologists in a retrospective blinded review of 163 controls and 164 individuals with PAE who were previously scanned as participants of past research studies. Incidental findings were categorized as normal variants, nonclinically significant incidental findings, or clinically significant incidental findings. Rates were compared between diagnostic subgroups using chi-square analysis. RESULTS There was no significant difference in the overall rate of incidental findings between groups: 75% of controls and 73% of PAE participants had no incidental findings of any kind, and only 1% of controls and 3% of PAE participants had incidental finding of clinical significance (the remaining findings were considered nonsignificant anomalies or normal variants). When the PAE group was split by diagnosis, low-lying cerebellar tonsils, polymicrogyria, and ventricular asymmetry/enlargement were all most prevalent in subjects with fetal alcohol syndrome/partial fetal alcohol syndrome. In addition, the overall rate of incidental findings was higher (41%) in participants with FAS/pFAS, compared to 25% in controls. No participants in this relatively large sample had corpus callosum agenesis. CONCLUSIONS Although advanced quantitative MRI research has uncovered a range of differences in brain structure associated with FASD, this qualitative radiological study suggests that routine clinical MRI does not reveal a consistent pattern of brain abnormalities that can be used diagnostically in this population.
Collapse
Affiliation(s)
- Sarah Treit
- From the, Department of Biomedical Engineering, (ST, CB), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dean Jeffery
- Department of Radiology and Diagnostic Imaging, (DJ, DE), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- From the, Department of Biomedical Engineering, (ST, CB), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Derek Emery
- Department of Radiology and Diagnostic Imaging, (DJ, DE), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Kozanian OO, Rohac DJ, Bavadian N, Corches A, Korzus E, Huffman KJ. Long-Lasting Effects of Prenatal Ethanol Exposure on Fear Learning and Development of the Amygdala. Front Behav Neurosci 2018; 12:200. [PMID: 30233337 PMCID: PMC6131196 DOI: 10.3389/fnbeh.2018.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El Shawa et al., 2013; Abbott et al., 2016). We have proposed that these phenotypes may underlie learning, memory, and behavioral deficits in humans with FASD. Here, we evaluate the impact of PrEE on fear memory learning, recall and amygdala development at two adult timepoints. PrEE alters learning and memory of aversive stimuli; specifically, PrEE mice, fear conditioned at postnatal day (P) 50, showed deficits in fear acquisition and memory retrieval when tested at P52 and later at P70–P72. Interestingly, this deficit in fear acquisition observed during young adulthood was not present when PrEE mice were conditioned later, at P80. These mice displayed similar levels of fear expression as controls when tested on fear memory recall. To test whether PrEE alters development of brain circuitry associated with fear conditioning and fear memory recall, we histologically examined subdivisions of the amygdala in PrEE and control mice and found long-term effects of PrEE on fear memory circuitry. Thus, results from this study will provide insight on the neurobiological and behavioral effects of PrEE and provide new information on developmental trajectories of brain dysfunction in people prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Niusha Bavadian
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Alex Corches
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States.,Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Biffen SC, Warton CMR, Lindinger NM, Randall SR, Lewis CE, Molteno CD, Jacobson JL, Jacobson SW, Meintjes EM. Reductions in Corpus Callosum Volume Partially Mediate Effects of Prenatal Alcohol Exposure on IQ. Front Neuroanat 2018; 11:132. [PMID: 29379419 PMCID: PMC5771245 DOI: 10.3389/fnana.2017.00132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Disproportionate volume reductions in the basal ganglia, corpus callosum (CC) and hippocampus have been reported in children with prenatal alcohol exposure (PAE). However, few studies have investigated these reductions in high prevalence communities, such as the Western Cape Province of South Africa, and only one study made use of manual tracing, the gold standard of volumetric analysis. The present study examined the effects of PAE on subcortical neuroanatomy using manual tracing and the relation of volumetric reductions in these regions to IQ and performance on the California Verbal Learning Test-Children's Version (CVLT-C), a list learning task sensitive to PAE. High-resolution T1-weighted images were acquired, using a sequence optimized for morphometric neuroanatomical analysis, on a Siemens 3T Allegra MRI scanner from 71 right-handed, 9- to 11-year-old children [9 fetal alcohol syndrome (FAS), 19 partial FAS (PFAS), 24 non-syndromal heavily exposed (HE) and 19 non-exposed controls]. Frequency of maternal drinking was ascertained prospectively during pregnancy using timeline follow-back interviews. PAE was examined in relation to volumes of the CC and left and right caudate nuclei, nucleus accumbens and hippocampi. All structures were manually traced using Multitracer. Higher levels of PAE were associated with reductions in CC volume after adjustment for TIV. Although the effect of PAE on CC was confounded with smoking and lead exposure, additional analyses showed that it was not accounted for by these exposures. Amongst dysmorphic children, smaller CC was associated with poorer IQ and CVLT-C scores and statistically mediated the effect of PAE on IQ. In addition, higher levels of PAE were associated with bilateral volume reductions in caudate nuclei and hippocampi, effects that remained significant after control for TIV, child sex and age, socioeconomic status, maternal smoking during pregnancy, and childhood lead exposure. These data confirm previous findings showing that PAE is associated with decreases in subcortical volumes and is the first study to show that decreases in callosal volume may play a role in fetal alcohol-related impairment in cognitive function seen in childhood.
Collapse
Affiliation(s)
- Stevie C Biffen
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher M R Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nadine M Lindinger
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Steven R Randall
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Catherine E Lewis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sandra W Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Ruisch IH, Dietrich A, Glennon JC, Buitelaar JK, Hoekstra PJ. Maternal substance use during pregnancy and offspring conduct problems: A meta-analysis. Neurosci Biobehav Rev 2018; 84:325-336. [DOI: 10.1016/j.neubiorev.2017.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/27/2017] [Accepted: 08/20/2017] [Indexed: 01/22/2023]
|
5
|
Neuronal Loss in the Developing Cerebral Cortex of Normal and Bax-Deficient Mice: Effects of Ethanol Exposure. Neuroscience 2018; 369:278-291. [DOI: 10.1016/j.neuroscience.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/21/2022]
|
6
|
Miller MW. Effect of prenatal exposure to ethanol on the pyramidal tract in developing rats. Brain Res 2017; 1672:122-128. [PMID: 28779978 DOI: 10.1016/j.brainres.2017.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Prenatal exposure to ethanol induces a relative increase in the numbers of pyramidal tract axons relative to the number of corticospinal projection neurons in somatosensory/motor cortices in the adult rat. The present study examines the effects of ethanol on the numbers of axons in the developing caudal pyramidal tract, i.e., corticospinal axons. Electron microscopic analyses of the pyramidal tracts of the offspring of pregnant rat dams fed a control diet ad libitum, pair-fed a liquid control diet, or fed an ethanol-containing diet ad libitum were performed. The pups were 5-, 15-, 30- and 90-days-old. The numbers of axons in control rats fell precipitously after postnatal day (P) 15 and the frequency of myelinated axons rose dramatically between P15 and P90. Ethanol exposure had no significant effect on the numbers of pyramidal tract axons at any age. Moreover, no ethanol-induced differences in the numbers of axons in different stages of myelination, i.e., axons that were "free" of glial associations, glia-engulfed, invested by 1-2 layers of myelin, or myelinated by 3+ layers of myelin, were detected on P15. Thus, it appears that (a) pyramidal tract axons are lost or pruned during the first two postnatal weeks and (b) postnatal development of pyramidal tract axons (e.g., pruning and myelination) is not affected by ethanol. The implications are that the ethanol-induced increase in the number of axons relative to the number of somata of corticospinal neurons detected in pups and adults results from the effects of ethanol on early stages (initiation) of axogenesis.
Collapse
Affiliation(s)
- Michael W Miller
- Department of Anatomy, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA; Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA 42242, USA; Department of Anatomy, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA.
| |
Collapse
|
7
|
Abbott CW, Kozanian OO, Kanaan J, Wendel KM, Huffman KJ. The Impact of Prenatal Ethanol Exposure on Neuroanatomical and Behavioral Development in Mice. Alcohol Clin Exp Res 2016; 40:122-33. [PMID: 26727530 DOI: 10.1111/acer.12936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/10/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND In utero alcohol, or ethanol (EtOH), exposure produces developmental abnormalities in the brain of the fetus, which can result in lifelong behavioral abnormalities. Fetal alcohol spectrum disorders (FASD) is a term used to describe a range of adverse developmental conditions caused by EtOH exposure during gestation. Children diagnosed with FASD potentially exhibit a host of phenotypes including growth retardation, facial dysmorphology, central nervous system anomalies, abnormal behavior, and cognitive deficits. Previous research suggests that abnormal gene expression and circuitry in the neocortex may underlie reported disabilities of learning, memory, and behavior resulting from early exposure to alcohol (J Neurosci, 33, 2013, 18893). METHODS Here, we utilize a mouse model of FASD to examine effects of prenatal EtOH exposure (PrEE), on brain anatomy in newborn (postnatal day [P]0), weanling (P20), and early adult (P50) mice. We correlate abnormal cortical and subcortical anatomy with atypical behavior in adult P50 PrEE mice. In this model, experimental dams self-administered a 25% EtOH solution throughout gestation (gestational days 0 to 19, day of birth), generating the exposure to the offspring. RESULTS Results from these experiments reveal long-term alterations to cortical anatomy, including atypical developmental cortical thinning, and abnormal subcortical development as a result of in utero EtOH exposure. Furthermore, offspring exposed to EtOH during the prenatal period performed poorly on behavioral tasks measuring sensorimotor integration and anxiety. CONCLUSIONS Insight from this study will help provide new information on developmental trajectories of PrEE and the biological etiologies of abnormal behavior in people diagnosed with FASD.
Collapse
Affiliation(s)
- Charles W Abbott
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, California
| | - Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, California
| | - Joseph Kanaan
- Department of Psychology, University of California, Riverside, Riverside, California
| | - Kara M Wendel
- Department of Psychology, University of California, Riverside, Riverside, California
| | - Kelly J Huffman
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, California.,Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
8
|
Benjamini D, Komlosh ME, Holtzclaw LA, Nevo U, Basser PJ. White matter microstructure from nonparametric axon diameter distribution mapping. Neuroimage 2016; 135:333-44. [PMID: 27126002 DOI: 10.1016/j.neuroimage.2016.04.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/18/2016] [Accepted: 04/21/2016] [Indexed: 12/31/2022] Open
Abstract
We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.
Collapse
Affiliation(s)
- Dan Benjamini
- Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
| | - Michal E Komlosh
- Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Lynne A Holtzclaw
- Microscopy & Imaging Core, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Peter J Basser
- Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
De Santis S, Jones DK, Roebroeck A. Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. Neuroimage 2016; 130:91-103. [PMID: 26826514 PMCID: PMC4819719 DOI: 10.1016/j.neuroimage.2016.01.047] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/01/2022] Open
Abstract
Axonal density and diameter are two fundamental properties of brain white matter. Recently, advanced diffusion MRI techniques have made these two parameters accessible in vivo. However, the techniques available to estimate such parameters are still under development. For example, current methods to map axonal diameters capture relative trends over different structures, but consistently over-estimate absolute diameters. Axonal density estimates are more accessible experimentally, but different modeling approaches exist and the impact of the experimental parameters has not been thoroughly quantified, potentially leading to incompatibility of results obtained in different studies using different techniques. Here, we characterise the impact of diffusion time on axonal density and diameter estimates using Monte Carlo simulations and STEAM diffusion MRI at 7 T on 9 healthy volunteers. We show that axonal density and diameter estimates strongly depend on diffusion time, with diameters almost invariably overestimated and density both over and underestimated for some commonly used models. Crucially, we also demonstrate that these biases are reduced when the model accounts for diffusion time dependency in the extra-axonal space. For axonal density estimates, both upward and downward bias in different situations are removed by modeling extra-axonal time-dependence, showing increased accuracy in these estimates. For axonal diameter estimates, we report increased accuracy in ground truth simulations and axonal diameter estimates decreased away from high values given by earlier models and towards known values in the human corpus callosum when modeling extra-axonal time-dependence. Axonal diameter feasibility under both advanced and clinical settings is discussed in the light of the proposed advances.
Collapse
Affiliation(s)
- Silvia De Santis
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF10 3AT, UK; Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Derek K Jones
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF10 3AT, UK; Neuroscience & Mental Health Research Institute, Cardiff University, CF10 3AT, UK
| | - Alard Roebroeck
- Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Wilhelm CJ, Guizzetti M. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective. Front Integr Neurosci 2016; 9:65. [PMID: 26793073 PMCID: PMC4707276 DOI: 10.3389/fnint.2015.00065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Psychiatry, Oregon Health and Science UniversityPortland, OR, USA
| | - Marina Guizzetti
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
11
|
Czarnobaj J, Bagnall KM, Bamforth JS, Milos NC. The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro. Arch Oral Biol 2014; 59:500-12. [PMID: 24631632 DOI: 10.1016/j.archoralbio.2014.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022]
Abstract
Embryonic neural crest cells give rise to large regions of the face and peripheral nervous system. Exposure of these cells to high alcohol concentrations leads to cell death in the craniofacial region resulting in facial defects. However, the effects of low concentrations of alcohol on neural crest cells are not clear. In this study, cranial neural crest cells from Xenopus laevis were cultured in an ethanol concentration approximately equivalent to one drink. Techniques were developed to study various aspects of neural crest cell behaviour and a number of cellular parameters were quantified. In the presence of alcohol, a significant number of cranial neural crest cells emigrated from the explant on fibronectin but the liberation of individual cells was delayed. The cells also remained close to the explant and their morphology changed. Cranial neural crest cells did not grow on Type 1 collagen. For the purposes of comparison, the behaviour of trunk neural crest cells was also studied. The presence of alcohol correlated with increased retention of single cells on fibronectin but left other parameters unchanged. The behaviour of trunk neural crest cells growing on Type 1 collagen in the presence of alcohol did not differ from controls. Low concentrations of alcohol therefore significantly affected both cranial and trunk neural crest cells, with a wider variety of effects on cells from the cranial as opposed to the trunk region. The results suggest that low concentrations of alcohol may be more detrimental to early events in organ formation than currently suspected.
Collapse
Affiliation(s)
- Joanna Czarnobaj
- Department of Dentistry, Faculty of Medicine and Dentistry, 7020 Katz Building University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| | - Keith M Bagnall
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Box 17666 Al Ain, United Arab Emirates.
| | - J Steven Bamforth
- Department of Medical Genetics, Faculty of Medicine and Dentistry, 8-53 Medical Science Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | - Nadine C Milos
- Department of Dentistry, Faculty of Medicine and Dentistry, 7020 Katz Building University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| |
Collapse
|
12
|
Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci 2014; 33:18893-905. [PMID: 24285895 DOI: 10.1523/jneurosci.3721-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In utero ethanol exposure from a mother's consumption of alcoholic beverages impacts brain and cognitive development, creating a range of deficits in the child (Levitt, 1998; Lebel et al., 2012). Children diagnosed with fetal alcohol spectrum disorders (FASD) are often born with facial dysmorphology and may exhibit cognitive, behavioral, and motor deficits from ethanol-related neurobiological damage in early development. Prenatal ethanol exposure (PrEE) is the number one cause of preventable mental and intellectual dysfunction globally, therefore the neurobiological underpinnings warrant systematic research. We document novel anatomical and gene expression abnormalities in the neocortex of newborn mice exposed to ethanol in utero. This is the first study to demonstrate large-scale changes in intraneocortical connections and disruption of normal patterns of neocortical gene expression in any prenatal ethanol exposure animal model. Neuroanatomical defects and abnormal neocortical RZRβ, Id2, and Cadherin8 expression patterns are observed in PrEE newborns, and abnormal behavior is present in 20-d-old PrEE mice. The vast network of neocortical connections is responsible for high-level sensory and motor processing as well as complex cognitive thought and behavior in humans. Disruptions to this network from PrEE-related changes in gene expression may underlie some of the cognitive-behavioral phenotypes observed in children with FASD.
Collapse
|
13
|
Ethanol-induced disruption of Golgi apparatus morphology, primary neurite number and cellular orientation in developing cortical neurons. Alcohol 2012; 46:619-27. [PMID: 22840816 DOI: 10.1016/j.alcohol.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 01/28/2023]
Abstract
Prenatal ethanol exposure disrupts cortical neurite initiation and outgrowth, but prior studies have reported both ethanol-dependent growth promotion and inhibition. To resolve this ambiguity and better approximate in vivo conditions, we quantitatively analyzed neuronal morphology using a new, whole hemisphere explant model. In this model, Layer 6 (L6) cortical neurons migrate, laminate and extend neurites in an organotypic fashion. To selectively label L6 neurons, we performed ex utero electroporation of a GFP expression construct at embryonic day 13 and allowed the explants to develop for 2 days in vitro. Explants were exposed to (400 mg/dL) ethanol for either 4 or 24 h prior to fixation. Complete 3-D reconstructions were made of >80 GFP-positive neurons in each experimental condition. Acute responses to ethanol exposure included compaction of the Golgi apparatus accompanied by elaboration of supernumerary primary apical neurites, as well as a modest (∼15%) increase in higher order apical neurite length. With longer exposure time, ethanol exposure leads to a consistent, significant disorientation of the cell (cell body, primary apical neurite, and Golgi) with respect to the pial surface. The effects on cellular orientation were accompanied by decreased expression of cytoskeletal elements, microtubule-associated protein 2 and F-actin. These findings indicate that upon exposure to ethanol, developing L6 neurons manifest disruptions in Golgi apparatus and cytoskeletal elements which may in turn trigger selective and significant perturbations to primary neurite formation and neuronal polarity.
Collapse
|
14
|
Isayama RN, Leite PEC, Lima JPM, Uziel D, Yamasaki EN. Impact of ethanol on the developing GABAergic system. Anat Rec (Hoboken) 2010; 292:1922-39. [PMID: 19943346 DOI: 10.1002/ar.20966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alcohol intake during pregnancy has a tremendous impact on the developing brain. Embryonic and early postnatal alcohol exposures have been investigated experimentally to elucidate the fetal alcohol spectrum disorders' (FASD) milieu, and new data have emerged to support a devastating effect on the GABAergic system in the adult and developing nervous system. GABA is a predominantly inhibitory neurotransmitter that during development excites neurons and orchestrates several developmental processes such as proliferation, migration, differentiation, and synaptogenesis. This review summarizes and brings new data on neurodevelopmental aspects of the GABAergic system with FASD in experimental telencephalic models.
Collapse
Affiliation(s)
- Ricardo Noboro Isayama
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
15
|
Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. ACTA ACUST UNITED AC 2009; 132:1210-20. [PMID: 19403788 DOI: 10.1093/brain/awp042] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Here, we present the first in vivo non-invasive measurement of the axon diameter distribution in the rat corpus callosum. Previously, this measurement was only possible using invasive histological methods. The axon diameter, along with other physical properties, such as the intra-axonal resistance, membrane resistance and capacitance etc. helps determine many important functional properties of nerves, such as their conduction velocity. In this work, we provide a novel magnetic resonance imaging method called AxCaliber, which can resolve the distinct signatures of trapped water molecules diffusing within axons as well as water molecules diffusing freely within the extra-axonal space. Using a series of diffusion weighted magnetic resonance imaging brain scans, we can reliably infer both the distribution of axon diameters and the volume fraction of these axons within each white matter voxel. We were able to verify the known microstructural variation along the corpus callosum of the rat from the anterior (genu) to posterior (splenium) regions. AxCaliber yields a narrow distribution centered approximately 1 microm in the genu and splenium and much broader distributions centered approximately 3 microm in the body of the corpus callosum. The axon diameter distribution found by AxCaliber is generally broader than those usually obtained by histology. One factor contributing to this difference is the significant tissue shrinkage that results from histological preparation. To that end, AxCaliber might provide a better estimate of the in vivo morphology of white matter. Being a magnetic resonance imaging based methodology, AxCaliber has the potential to be used in human scanners for morphological studies of white matter in normal and abnormal development, and white matter related diseases.
Collapse
Affiliation(s)
- Daniel Barazany
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
16
|
Shirpoor A, Salami S, Khadem-Ansari MH, Minassian S, Yegiazarian M. Protective effect of vitamin E against ethanol-induced hyperhomocysteinemia, DNA damage, and atrophy in the developing male rat brain. Alcohol Clin Exp Res 2009; 33:1181-6. [PMID: 19389196 DOI: 10.1111/j.1530-0277.2009.00941.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic alcoholism leads to elevated plasma and brain homocysteine (Hcy) levels, as demonstrated by clinical investigations and animal experiments. It has been posited that elevated levels of Hcy mediate DNA damage, brain atrophy, and excitotoxicity. The current study sought to elucidate the effect of vitamin E on ethanol-induced hyperhomocysteinemia, DNA damage, and atrophy in the developing hippocampus and cerebellum of rats. METHODS Pregnant Wistar rats received ethanol with or without vitamin E from gestation day 7 throughout lactation. Weight changes in the brain, hippocampus and cerebellum, DNA damage, and Hcy levels in the plasma, hippocampus, and cerebellum of male offspring were measured at the end of lactation. RESULTS The results revealed that along with a significant decrease in brain, cerebellum, and hippocampus weights in animals that received alcohol, the levels of DNA damage and Hcy significantly increased. Significant amelioration of brain atrophy and DNA damage as well as restoration of the elevated level of Hcy to that of controls were found in vitamin E-treated rats. CONCLUSIONS These findings strongly support the idea that ethanol intake by dams during pregnancy and lactation induces Hcy-mediated oxidative stress in the developing hippocampus and cerebellum of offspring rats, and that these effects can be alleviated by vitamin E as an antioxidant.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences (AS), Urmia, Iran
| | | | | | | | | |
Collapse
|