1
|
Liu D, Liu S, Li J, Liu X, Wu X, Peng Y, Shen Q. Proteome-Wide Analysis of the Hippocampus in Adult Mice with Learning and Memory Impairment Caused by Chronic Ethanol Exposure. Neurobiol Learn Mem 2022; 194:107661. [PMID: 35878712 DOI: 10.1016/j.nlm.2022.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Alcohol consumption may cause various impairments in the brain. The hippocampus is particularly vulnerable to alcohol exposure, which may cause learning and memory deficits. Recently, proteomics analysis has become a popular approach to explore the pathogenesis of various diseases. The present study was conducted to investigate protein expression alteration in the hippocampus and to identify the molecular mechanisms underlying ethanol-induced learning and memory impairments. Mouse models of chronic ethanol intoxication were established by intragastrical administration for 28 consecutive days, and hippocampal neuronal damage was assessed by Nissl staining. Recognition memory was evaluated by Novel object recognition and Morris water maze tests, and hippocampus tissues were collected for label-free quantitative proteomics and analyzed using bioinformatics methods. Our study showed that chronic ethanol exposure prompted marked changes in protein expression in the hippocampus. We identified 32 differentially expressed proteins, of which 21 were upregulated and 11 downregulated. Gene Ontology analysis suggested that the identified differentially proteins were mainly involved in cytoskeleton and signal transduction mechanisms. Further verification using Western blotting and real-time quantitative PCR revealed that the hippocampal CTSL (cathepsin L), and PVALB (Parvalbumin) showed strongest expression changes, the latter being specifically expressed in GABAergic interneurons. These two proteins might serve as candidate protein biomarkers, providing new prospects for the diagnosis and treatment of ethanol-induced learning and memory disorders.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuqiong Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiande Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohuan Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxuan Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qingyu Shen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Munir MT, Javed MT, Rehman A, Reyes Reyes JD. Effects of ethanol on health and performance of poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2020.1866962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Muhammad Tanveer Munir
- Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole supérieur du Bois, Nantes, France
| | - Muhammad Tariq Javed
- Department of Veterinary Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Jennifer Danaidae Reyes Reyes
- Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation (ONIRIS), Nantes, France
- Pilgrim’s, C.P 76100 Santiago de Querétaro, Qro, México
| |
Collapse
|
3
|
Krawczyk M, Ramani M, Dian J, Florez CM, Mylvaganam S, Brien J, Reynolds J, Kapur B, Zoidl G, Poulter MO, Carlen PL. Hippocampal hyperexcitability in fetal alcohol spectrum disorder: Pathological sharp waves and excitatory/inhibitory synaptic imbalance. Exp Neurol 2016; 280:70-9. [PMID: 26996134 DOI: 10.1016/j.expneurol.2016.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/29/2016] [Accepted: 03/13/2016] [Indexed: 01/01/2023]
Abstract
Prenatal alcohol exposure (PAE) can lead to long-lasting neurological alterations that may predispose individuals to seizures and neurobehavioral dysfunction. To date, there exists limited information regarding the underlying pathophysiological mechanisms. The hippocampal CA3 region generates excitatory population activity, called sharp waves (SPWs), that provide an ideal model to study perturbations in neuronal excitability at the network and cellular levels. In the present study, we utilized a mouse model of PAE and used dual extracellular and whole-cell patch-clamp recordings from CA3 hippocampal pyramidal cells to evaluate the effect of 1st trimester-equivalent ethanol exposure (10% v/v) on SPW activity and excitatory/inhibitory balance. We observed that PAE significantly altered in vitro SPW waveforms, with an increased duration and amplitude, when compared to controls. In addition, PAE slices exhibited reduced pharmacological inhibition by the GABA-A receptor antagonist bicuculline (BMI) on SPW activity, and increased population spike paired-pulse ratios, all indicative of network disinhibition within the PAE hippocampus. Evaluation of PAE CA3 pyramidal cell activity associated with SPWs, revealed increased action potential cell firing, which was accompanied by an imbalance of excitatory/inhibitory synaptic drive, shifted in favor of excitation. Moreover, we observed intrinsic changes in CA3 pyramidal activity in PAE animals, including increased burst firing and instantaneous firing rate. This is the first study to provide evidence for hippocampal dysfunction in the ability to maintain network homeostasis and underlying cellular hyperexcitability in a model of PAE. These circuit and cellular level alterations may contribute to the increased propensity for seizures and neurobehavioral dysfunction observed in patients with a history of PAE.
Collapse
Affiliation(s)
- Michal Krawczyk
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada.
| | - Meera Ramani
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - Josh Dian
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - Carlos M Florez
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - Shanthini Mylvaganam
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada
| | - James Brien
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - James Reynolds
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Bhushan Kapur
- Division of Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada; Department of Psychology, York University, Toronto, ON, Canada
| | - Michael O Poulter
- Robarts Research Institute and Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Peter L Carlen
- Division of Fundamental Neurobiology, Toronto Western Research Institute, UHN, Toronto, ON, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Higuera-Matas A, Montoya GL, Coria SM, Miguéns M, García-Lecumberri C, Ambrosio E. Differential gene expression in the nucleus accumbens and frontal cortex of lewis and Fischer 344 rats relevant to drug addiction. Curr Neuropharmacol 2011; 9:143-50. [PMID: 21886580 PMCID: PMC3137170 DOI: 10.2174/157015911795017290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse.
Collapse
Affiliation(s)
- A Higuera-Matas
- Departamento de Psicobiología, Facultad de Psicología, UNED, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Hypothyroid states mitigate the diabetes-induced reduction of calbindin D-28k, calretinin, and parvalbumin immunoreactivity in type 2 diabetic rats. Neurochem Res 2011; 37:253-60. [PMID: 22037839 DOI: 10.1007/s11064-011-0602-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/29/2011] [Accepted: 09/09/2011] [Indexed: 10/15/2022]
Abstract
In this study, we investigated the differences in calbindin D-28k (CB), calretinin, (CR) and parvalbumin (PV) immunoreactivity in the hippocampus of Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats. In addition, we observed the effects of hypothyroidism on the levels of immunoreactivity of these proteins in ZDF rats. For this study, 7-week-old ZDF rats were used, and methimazole treatment was continued for 5 weeks to induce hypothyroidism. The animals were sacrificed at 12 weeks of age. ZDF rats showed increased blood glucose levels compared to those in ZLC rats. Methimazole intervention significantly reduced total and free T3 levels, and it ameliorated the increase of blood glucose levels in ZDF rats. In ZLC rats, CB, CR, and PV immunoreactivity was detected in regions of the hippocampus proper. In vehicle-treated ZDF rats, CB, CR, and PV immunoreactivity was significantly decreased in the hippocampus. However, in the methimazole-treated rats, CB, CR, and PV immunoreactivity was significantly increased compared to that in the vehicle-treated rats. These results suggest that hypothyroidism ameliorated the diabetes-induced reduction of CB, CR, and PV immunoreactivity in the hippocampus.
Collapse
|
6
|
Yunus AW, Awad WA, Kröger S, Zentek J, Böhm J. Dose-dependent increase and decrease in active glucose uptake in jejunal epithelium of broilers after acute exposure to ethanol. Alcohol 2011; 45:411-4. [PMID: 20880658 DOI: 10.1016/j.alcohol.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 07/26/2010] [Accepted: 08/07/2010] [Indexed: 10/19/2022]
Abstract
Little is known about the effects of ethanol on gastrointestinal tract of chicken. In this study, we investigated the effects of low levels of ethanol on electrophysiological variables of jejunal epithelium of commercial broilers. Jejunal tissues from 35- to 39-day-old broilers were exposed to either 0 or 0.1% ethanol in Ussing chambers, and electrophysiological variables were monitored for 40 min. After 40 and 60 min of incubation, glucose (20 mM) and carbamoylcholine (200 μM), respectively, were introduced into the chambers. The absolute and percent increase in short-circuit current (Isc) and potential difference (Vt) induced by glucose were increased significantly with 0.1% ethanol. There was no significant effect of 0.1% ethanol on carbamoylcholine-induced electrophysiological variables. To investigate if higher levels of ethanol have similar effects, we tested the effects of 0, 0.33, and 0.66% ethanol under similar experimental conditions until the glucose-addition step. Contrary to 0.1% ethanol, both the 0.33 and 0.66% ethanol levels significantly decreased the basal and glucose-induced Isc and Vt. Tissue conductivity remained unaffected in all cases. These results indicate that intestinal epithelia of chicken may be more sensitive to the effects of ethanol as compared with other species. This is the first report indicating dose-dependent increase and decrease in active glucose absorption in intestinal epithelia in the presence of ethanol.
Collapse
|
7
|
Magnetic resonance-based imaging in animal models of fetal alcohol spectrum disorder. Neuropsychol Rev 2011; 21:167-85. [PMID: 21445552 DOI: 10.1007/s11065-011-9164-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/01/2011] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) techniques, such as magnetic resonance microscopy (MRM), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS), have recently been applied to the study of both normal and abnormal structure and neurochemistry in small animals. Herein, findings from studies in which these methods have been used for the examination of animal models of Fetal Alcohol Spectrum Disorder (FASD) are discussed. Emphasis is placed on results of imaging studies in fetal and postnatal mice that have highlighted the developmental stage dependency of prenatal ethanol exposure-induced CNS defects. Consideration is also given to the promise of methodological advances to allow in vivo studies of aberrant brain and behavior relationships in model animals and to the translational nature of this work.
Collapse
|