1
|
Kim HJ, Min KB, Min JY. Neuropeptide Y gene-by-psychosocial stress interaction effect is associated with obesity in a Korean population. Psychoneuroendocrinology 2016; 69:10-5. [PMID: 27010740 DOI: 10.1016/j.psyneuen.2016.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Chronic psychosocial stress is a crucial risk factor in the development of many diseases including obesity. Neuropeptide Y (NPY), distributed throughout the peripheral and central nervous system, is believed to pay a role in the pathophysiologic relationship between stress and obesity. Although several animal studies have investigated the impact on obesity of interactions between NPY single nucleotide polymorphisms (SNPs) and stress, the same remains to be analyzed in humans. METHODS To identify NPY gene-by-stress interaction effects on human obesity, we analyzed the interaction between four NPY SNPs and stress with obesity-related traits, including visceral adipose tissue (VAT). A total of 1468 adult subjects were included for this analysis. RESULTS In a SNP-only model without interaction with stress, no significant SNPs were found (pSNP>0.05). However, NPY SNPs-by-stress interaction effects were significantly linked to body mass index (BMI), waist circumference, and VAT (pint<0.05), even though a significant interaction effect for rs16135 on BMI was not identified. These significant interaction effects were also detected in interaction results for the binary traits of obesity. Among the obesity traits, mean changes of VAT by increased stress levels in homozygous risk allele carriers were the greatest (range of mean increases for four SNPs (min-max)=12.57cm(2)-29.86cm(2)). CONCLUSIONS This study suggests that common polymorphisms for NPY were associated with human obesity by interacting with psychosocial stress, emphasizing the need for stress management in obesity prevention.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Min
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Warnault V, Darcq E, Morisot N, Phamluong K, Wilbrecht L, Massa SM, Longo FM, Ron D. The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biol Psychiatry 2016; 79:463-73. [PMID: 26204799 PMCID: PMC4676961 DOI: 10.1016/j.biopsych.2015.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND The valine 66 to methionine (Met) polymorphism within the brain-derived neurotrophic factor (BDNF) sequence reduces activity-dependent BDNF release and is associated with psychiatric disorders in humans. Alcoholism is one of the most prevalent psychiatric diseases. Here, we tested the hypothesis that this polymorphism increases the severity of alcohol abuse disorders. METHODS We generated transgenic mice carrying the mouse homolog of the human Met66BDNF allele (Met68BDNF) and used alcohol-drinking paradigms in combination with viral-mediated gene delivery and pharmacology. RESULTS We found that Met68BDNF mice consumed excessive amounts of alcohol and continued to drink despite negative consequences, a hallmark of addiction. Importantly, compulsive alcohol intake was reversed by overexpression of the wild-type valine68BDNF allele in the ventromedial prefrontal cortex of the Met68BDNF mice or by systemic administration of the tropomyosin receptor kinase B agonist, LM22A-4. CONCLUSIONS Our findings suggest that carrying this BDNF allele increases the risk of developing uncontrolled and excessive alcohol drinking that can be reversed by directly activating the BDNF receptor, tropomyosin receptor kinase B. Importantly, this work identifies a potential therapeutic strategy for the treatment of compulsive alcohol drinking in humans carrying the Met66BDNF allele.
Collapse
Affiliation(s)
- Vincent Warnault
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Emmanuel Darcq
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Nadege Morisot
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley
| | - Stephen M Massa
- Department of Neurology, University of California, San Francisco, San Francisco; Laboratory for Computational Neurochemistry and Drug Discovery and Department of Veterans Affairs Medical Center, University of California, San Francisco, San Francisco
| | - Frank M Longo
- Department of Neurology and Neurological Sciences (FML), Stanford University School of Medicine, Stanford, California
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco.
| |
Collapse
|
4
|
Barkley-Levenson AM, Ryabinin AE, Crabbe JC. Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication. Behav Brain Res 2016; 302:160-70. [PMID: 26779672 DOI: 10.1016/j.bbr.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/06/2015] [Accepted: 01/05/2016] [Indexed: 11/17/2022]
Abstract
The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) - especially in the shell - in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice.
Collapse
Affiliation(s)
- Amanda M Barkley-Levenson
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States; VA Portland Health Care System, Portland, OR 97239, United States.
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States; VA Portland Health Care System, Portland, OR 97239, United States
| |
Collapse
|
5
|
Abstract
Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential 'resilience-to-stress' factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target.
Collapse
Affiliation(s)
- R Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - TD Geracioti
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Bhaskar LVKS, Thangaraj K, Kumar KP, Pardhasaradhi G, Singh L, Rao VR. Association between neuropeptide Y gene polymorphisms and alcohol dependence: a case-control study in two independent populations. Eur Addict Res 2013; 19:307-13. [PMID: 23652361 DOI: 10.1159/000346679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 12/20/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND Alcohol dependence is a chronic, progressive neurobiological brain disorder. Previous research reported an inverse association between ethanol drinking and cerebral neuropeptide Y (NPY) levels. There are conflicting results of studies on NPY gene polymorphisms in association with alcohol dependence in humans. METHODS To assess the role of the NPY gene in alcohol dependence, we genotyped three polymorphisms--in a sample of 195 subjects from the Kota population (80 alcohol dependence and 115 controls) and 141 subjects from the Badaga population (80 alcohol dependence and 61 controls). Phenotype was defined based on the DSM-IV criteria. Genotyping was performed using sequencing. Association of the NPY gene with alcohol dependence was tested by using logistic regression and haplotype analyses and linkage disequilibrium. RESULTS All three polymorphisms were found to be in the Hardy-Weinberg equilibrium in both populations. The results of our study reveal a significant association between G1258A and alcohol dependence in both the Kota and Badaga populations. The linkage disequilibrium between the markers is not strong or significant. Haplotype analysis also did not show significant association between the NPY gene and alcohol dependence. CONCLUSION These data support the hypothesis that alcohol dependence is influenced by the NPY G1258A polymorphism in Indian populations.
Collapse
|
7
|
Abstract
Alcohol consumption and its association with health or illness states are of great interest from the nutritional genomics point of view. This interest is centered not only on investigating the genetic variants that can modulate the effects of alcoholic beverages on different intermediate and final disease phenotypes (mainly cardiovascular diseases and cancer), but also on finding out how the genome influences the amount of alcohol consumed and consumption habits. This chapter reviews the latest findings on alcohol consumption trends, the methodological limitations in the analysis of alcohol consumption, and the main genes and polymorphisms related to alcohol intake, including the inconsistent results from genome-wide association studies (GWASs). It also reviews the effects of alcohol consumption on cardiovascular diseases and cancer and the studies analyzing the interactions between different genetic polymorphisms and alcohol in phenotypes related to these diseases, discussing the studies' advantages and limitations as well as future research perspectives.
Collapse
|