1
|
Benkherouf AY, Taina KR, Meera P, Aalto AJ, Li XG, Soini SL, Wallner M, Uusi-Oukari M. Extrasynaptic δ-GABA A receptors are high-affinity muscimol receptors. J Neurochem 2019; 149:41-53. [PMID: 30565258 PMCID: PMC6438731 DOI: 10.1111/jnc.14646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Muscimol, the major psychoactive ingredient in the mushroom Amanita muscaria, has been regarded as a universal non‐selective GABA‐site agonist. Deletion of the GABAA receptor (GABAAR) δ subunit in mice (δKO) leads to a drastic reduction in high‐affinity muscimol binding in brain sections and to a lower behavioral sensitivity to muscimol than their wild type counterparts. Here, we use forebrain and cerebellar brain homogenates from WT and δKO mice to show that deletion of the δ subunit leads to a > 50% loss of high‐affinity 5 nM [3H]muscimol‐binding sites despite the relatively low abundance of δ‐containing GABAARs (δ‐GABAAR) in the brain. By subtracting residual high‐affinity binding in δKO mice and measuring the slow association and dissociation rates we show that native δ‐GABAARs in WT mice exhibit high‐affinity [3H]muscimol‐binding sites (KD ~1.6 nM on α4βδ receptors in the forebrain and ~1 nM on α6βδ receptors in the cerebellum at 22°C). Co‐expression of the δ subunit with α6 and β2 or β3 in recombinant (HEK 293) expression leads to the appearance of a slowly dissociating [3H]muscimol component. In addition, we compared muscimol currents in recombinant α4β3δ and α4β3 receptors and show that δ subunit co‐expression leads to highly muscimol‐sensitive currents with an estimated EC50 of around 1–2 nM and slow deactivation kinetics. These data indicate that δ subunit incorporation leads to a dramatic increase in GABAAR muscimol sensitivity. We conclude that biochemical and behavioral low‐dose muscimol selectivity for δ‐subunit‐containing receptors is a result of low nanomolar‐binding affinity on δ‐GABAARs. ![]()
Collapse
Affiliation(s)
- Ali Y Benkherouf
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa-Riitta Taina
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pratap Meera
- Department of Neurobiology, University of California, Los Angeles, California, USA
| | - Asko J Aalto
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku PET Centre, Abo Akademi University, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sanna L Soini
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Mikko Uusi-Oukari
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|