1
|
Soda T, Brunetti V, Berra-Romani R, Moccia F. The Emerging Role of N-Methyl-D-Aspartate (NMDA) Receptors in the Cardiovascular System: Physiological Implications, Pathological Consequences, and Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24043914. [PMID: 36835323 PMCID: PMC9965111 DOI: 10.3390/ijms24043914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now known that they also regulate crucial functions in the non-neuronal cellular component of the CNS, i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the most recent information available regarding the distribution and function of NMDARs within the cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow, and in the blood-brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy to reduce the growing burden of several life-threatening cardiovascular disorders.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987613
| |
Collapse
|
2
|
The Role of Cardiac N-Methyl-D-Aspartate Receptors in Heart Conditioning-Effects on Heart Function and Oxidative Stress. Biomolecules 2020; 10:biom10071065. [PMID: 32708792 PMCID: PMC7408261 DOI: 10.3390/biom10071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
As well as the most known role of N-methyl-D-aspartate receptors (NMDARs) in the nervous system, there is a plethora of evidence that NMDARs are also present in the cardiovascular system where they participate in various physiological processes, as well as pathological conditions. The aim of this study was to assess the effects of preconditioning and postconditioning of isolated rat heart with NMDAR agonists and antagonists on heart function and release of oxidative stress biomarkers. The hearts of male Wistar albino rats were subjected to global ischemia for 20 min, followed by 30 min of reperfusion, using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent preconditioning with the NMDAR agonists glutamate (100 µmol/L) and (RS)-(Tetrazol-5-yl)glycine (5 μmol/L) and the NMDAR antagonists memantine (100 μmol/L) and MK-801 (30 μmol/L). In the postconditioning group, the hearts were perfused with the same dose of drugs during the first 3 min of reperfusion. The oxidative stress biomarkers were determined spectrophotometrically in samples of coronary venous effluent. The NMDAR antagonists, especially MK-801, applied in postconditioning had a marked antioxidative effect with a most pronounced protective effect. The results from this study suggest that NMDARs could be a potential therapeutic target in the prevention and treatment of ischemic and reperfusion injury of the heart.
Collapse
|
3
|
Bądzyńska B, Zakrocka I, Turski WA, Olszyński KH, Sadowski J, Kompanowska-Jezierska E. Kynurenic acid selectively reduces heart rate in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:673-679. [PMID: 31807837 DOI: 10.1007/s00210-019-01771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
We found previously that intravenous kynurenic acid (KYNA), a native broad spectrum glutamate antagonist, increases renal blood flow and induces natriuresis in anesthetized spontaneously hypertensive rats (SHR). Since such changes may affect systemic circulation and can potentially find therapeutic application, in this study we examined long term influence of orally administered KYNA on systemic and renal hemodynamics and renal excretion in conscious SHR. KYNA was administered in drinking water at a dose of 25 mg/kg/day for 3 weeks. Heart rate (HR), systolic (SBP), and mean arterial pressure (MAP) were measured through telemetry. The records were taken at the beginning of the study (control, day 0), and then on day 7, 14, and 21 of treatment. Diuresis (V), total solute excretion (UosmV), and sodium excretion (UNaV) were determined on days 0, 7, and 14. KYNA consistently decreased HR, from 319 ± 8 to 291 ± 5, 299 ± 9 and 284 ± 6 beats/min on day 7, 14, and 21, respectively, (- 9, - 6, and - 11%; p < 0.01-0.0001); HR was stable in the solvent group. SBP, MAP, V, and UNaV were not affected by KYNA, whereas UosmV increased modestly. Chronic oral administration of KYNA to conscious SHR decreased HR without affecting MAP. Since tachycardia is an independent risk factor for cardiovascular disorders, and most drugs used to decrease HR have strong inotropic negative or hypotensive effect, such selective action seems of therapeutic potential. Moreover, food supplementation with KYNA can be considered in the prevention of heart diseases.
Collapse
Affiliation(s)
- Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Izabela Zakrocka
- Department of Experimental and Clinical Pharmacology, Department of Nephrology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Krzysztof H Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Wang Y, Yin SW, Zhang N, Zhao P. High-concentration sevoflurane exposure in mid-gestation induces apoptosis of neural stem cells in rat offspring. Neural Regen Res 2018; 13:1575-1584. [PMID: 30127118 PMCID: PMC6126114 DOI: 10.4103/1673-5374.237121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sevoflurane is the most commonly used volatile anesthetic during pregnancy. The viability of neural stem cells directly affects the development of the brain. However, it is unknown whether the use of sevoflurane during the second trimester affects the survival of fetal neural stem cells. Therefore, in this study, we investigated whether exposure to sevoflurane in mid-gestation induces apoptosis of neural stem cells and behavioral abnormalities. On gestational day 14, pregnant rats were anesthetized with 2% or 3.5% sevoflurane for 2 hours. The offspring were weaned at 28 days and subjected to the Morris water maze test. The brains were harvested to examine neural stem cell apoptosis by immunofluorescence and to measure Nestin and SOX-2 levels by western blot assay at 6, 24 and 48 hours after anesthesia as well as on postnatal day (P) 0, 14 and 28. Vascular endothelial growth factor (VEGF) and phosphoinositide 3-kinase (PI3K)/AKT pathway protein levels in fetal brain at 6 hours after anesthesia were assessed by western blot assay. Exposure to high-concentration (3.5%) sevoflurane during mid-gestation increased escape latency and path length to the platform, and it reduced the average duration spent in the target quadrant and platform crossing times. At 6, 24 and 48 hours after anesthesia and at P0, P14 and P28, the percentage of Nestin/terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells was increased, but Nestin and SOX-2 protein levels were decreased in the hippocampus of the offspring. At 6 hours after anesthesia, VEGF, PI3K and phospho-AKT (p-AKT) levels were decreased in the fetal brain. These changes were not observed in animals given low-concentration (2%) sevoflurane exposure. Together, our findings indicate that exposure to a high concentration of sevoflurane (3.5%) in mid-gestation decreases VEGF, PI3K and p-AKT protein levels and induces neural stem cell apoptosis, thereby causing learning and memory dysfunction in the offspring.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shao-Wei Yin
- Department of Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
5
|
Srejovic I, Zivkovic V, Nikolic T, Jeremic N, Stojic I, Jeremic J, Djuric D, Jakovljevic V. Modulation of N-methyl-d-aspartate receptors in isolated rat heart. Can J Physiol Pharmacol 2017; 95:1327-1334. [PMID: 28758414 DOI: 10.1139/cjpp-2017-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considering the limited data on the role of NMDA-Rs in the cardiovascular system, the aim of the present study was to examine the effects of NMDA and DL-Hcy TLHC, alone and in combination with glycine, memantine, and ifenprodil, in the isolated rat heart. The hearts of Wistar albino rats were retrogradely perfused according to the Langendorff technique at a constant perfusion pressure. The experimental protocol for all experimental groups included the stabilization period, application of estimated substance for 5 min, followed by a washout period of 10 min. Using a sensor placed in the left ventricle, we registered the following parameters of myocardial function: dp/dtmax, dp/dtmin, SLVP, DVLP, HR; CF was measured using flowmetry). We estimated the following oxidative stress biomarkers in the coronary venous effluent using spectrophotometry: TBARS, NO2-, O2-, and H2O2. NMDA alone did not induce any change in any of the observed parameters, while DL-Hcy TLHC alone, as well as a combined application of NMDA and DL-Hcy TLHC with glycine, induced a reduction of most cardiodynamic parameters. Memantine and ifenprodil induced a reduction of cardiodynamic parameters and CF, as well as some oxidative stress biomarkers.
Collapse
Affiliation(s)
- Ivan Srejovic
- a Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- a Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Nikolic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora Stojic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Jeremic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Djuric
- c Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Jakovljevic
- a Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,d Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
6
|
Steiner JL, Lang CH. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 2017; 89:125-135. [PMID: 28606389 DOI: 10.1016/j.biocel.2017.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022]
Abstract
Putative mechanisms leading to the development of alcoholic cardiomyopathy (ACM) include the interrelated cellular processes of mitochondria metabolism, oxidative stress and apoptosis. As mitochondria fuel the constant energy demands of this continually contracting tissue, it is not surprising that alcohol-induced molecular changes in this organelle contribute to cardiac dysfunction and ACM. As the causal relationship of these processes with ACM has already been established, the primary objective of this review is to provide an update of the experimental findings to more completely understand the aforementioned mechanisms. Accordingly, recent data indicate that alcohol impairs mitochondria function assessed by membrane potential and respiratory chain activity. Indictors of oxidative stress including superoxide dismutase, glutathione metabolites and malondialdehyde are also adversely affected by alcohol oftentimes in a sex-dependent manner. Additionally, myocardial apoptosis is increased based on assessment of TUNEL staining and caspase activity. Recent work has also emerged linking alcohol-induced oxidative stress with apoptosis providing new insight on the codependence of these interrelated mechanisms in ACM. Attention is also given to methodological differences including the dose of alcohol, experimental model system and the use of males versus females to highlight inconsistencies and areas that would benefit from establishment of a consistent model.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| |
Collapse
|
7
|
Abstract
Excellent reviews on central N-methyl-D-aspartate receptor (NMDAR) signaling and function in cardiovascular regulating neuronal pools have been reported. However, much less attention has been given to NMDAR function in peripheral tissues, particularly the heart and vasculature, although a very recent review discusses such function in the kidney. In this short review, we discuss the NMDAR expression and complexity of its function in cardiovascular tissues. In conscious (contrary to anesthetized) rats, activation of the peripheral NMDAR triggers cardiovascular oxidative stress through the PI3K-ERK1/2-NO signaling pathway, which ultimately leads to elevation in blood pressure. Evidence also implicates Ca release, in the peripheral NMDAR-mediated pressor response. Despite evidence of circulating potent ligands (eg, D-aspartate and L-aspartate, L-homocysteic acid, and quinolinic acid) and also their coagonist (eg, glycine or D-serine), the physiological role of peripheral cardiovascular NMDAR remains elusive. Nonetheless, the cardiovascular relevance of the peripheral NMDAR might become apparent when its signaling is altered by drugs, such as alcohol, which interact with the NMDAR or its downstream signaling mechanisms.
Collapse
Affiliation(s)
- Marie A. McGee
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC
| | - Abdel A. Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|