1
|
Zhu C, Hu C, Wang J, Chen Y, Zhao Y, Chi Z. A precise microalgae farming for CO 2 sequestration: A critical review and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166013. [PMID: 37541491 DOI: 10.1016/j.scitotenv.2023.166013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Microalgae are great candidates for CO2 sequestration and sustainable production of food, feed, fuels and biochemicals. Light intensity, temperature, carbon supply, and cell physiological state are key factors of photosynthesis, and efficient phototrophic production of microalgal biomass occurs only when all these factors are in their optimal range simultaneously. However, this synergistic state is often not achievable due to the ever-changing environmental factors such as sunlight and temperature, which results in serious waste of sunlight energy and other resources, ultimately leading to high production costs. Most control strategies developed thus far in the bioengineering field actually aim to improve heterotrophic processes, but phototrophic processes face a completely different problem. Hence, an alternative control strategy needs to be developed, and precise microalgal cultivation is a promising strategy in which the production resources are precisely supplied according to the dynamic changes in key factors such as sunlight and temperature. In this work, the development and recent progress of precise microalgal phototrophic cultivation are reviewed. The key environmental and cultivation factors and their dynamic effects on microalgal cultivation are analyzed, including microalgal growth, cultivation costs and energy inputs. Future research for the development of more precise microalgae farming is discussed. This study provides new insight into developing cost-effective and efficient microalgae farming for CO2 sequestration.
Collapse
Affiliation(s)
- Chenba Zhu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China.
| | - Chen Hu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen 361005, China
| | - Jialin Wang
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen 361005, China
| | - Yimin Chen
- Environmental and Ecological Engineering Technology Center, Industrial Technology Research Institute, Xiamen University, Xiamen 361005, China
| | - Yunpeng Zhao
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| |
Collapse
|
2
|
Bonnefond H, Lie Y, Lacour T, Saint-Jean B, Carrier G, Pruvost E, Talec A, Bernard O, Sciandra A. Dynamical Darwinian selection of a more productive strain of Tisochrysis lutea. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Heredia V, Marchal L, Gonçalves O, Pruvost J. Optimization of continuous TAG production by Nannochloropsis gaditana in solar-nitrogen-limited culture. Biotechnol Bioeng 2022; 119:1808-1819. [PMID: 35377482 DOI: 10.1002/bit.28097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Nitrogen limitation and changing solar conditions are both known to affect triacylglycerol (TAG) production in microalgae. This work investigates the optimization of TAG production with a continuous nitrogen-limited culture of Nannochloropsis gaditana in simulated day-night cycles. The effect of day-night cycles was firstly investigated in nitrogen-deprived condition (i.e. batch culture), emphasizing a significant change in mechanical resistance of the strain during the night. The concept of Released TAG, which shows how much of the TAG produced is actually recovered in the downstream stages, i.e. after cell disruption, was shown here of interest. For a maximum released TAG, the optimum harvesting time was suggested as being 4 hours into the night period, which minimizes the losses due to a too great cell mechanical resistance. The protocol for continuous nitrogen-limited culture was then optimized, and a continuous nitrogen addition was compared to a pulsed-addition. For the latter, nitrogen was supplied in a single pulse at the beginning of the light periods, while the bulk medium was supplied separately at a slow but constant dilution rate of 0.005 h - 1 . The pulse dose was calculated after the study of nitrogen consumption and TAG production/consumption during the day-night cycles. The estimated released TAG for the pulsed-addition of 1.4 ⋅ 1 0 - 3 kg/m 2 ⋅ d was found significantly higher than the one achieved in batch culture (0.3 ⋅ 1 0 - 3 kg/m 2 ⋅ d) but lower than for continuous nitrogen addition which obtained the highest released TAG of 3 ⋅ 1 0 - 3 kg/m 2 ⋅ d. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vladimir Heredia
- Université de Nantes, Oniris, GEPEA, UMR 6144 F-44600, Saint-Nazaire, France
| | - Luc Marchal
- Université de Nantes, Oniris, GEPEA, UMR 6144 F-44600, Saint-Nazaire, France
| | - Olivier Gonçalves
- Université de Nantes, Oniris, GEPEA, UMR 6144 F-44600, Saint-Nazaire, France
| | - Jeremy Pruvost
- Université de Nantes, Oniris, GEPEA, UMR 6144 F-44600, Saint-Nazaire, France
| |
Collapse
|
4
|
Xi Y, Zhang J, Kong F, Che J, Chi Z. Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina. BIORESOUR BIOPROCESS 2022; 9:4. [PMID: 38647742 PMCID: PMC10991233 DOI: 10.1186/s40643-022-00495-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/08/2022] [Indexed: 12/31/2022] Open
Abstract
Dunaliella salina is a green microalga with the great potential to generate natural β-carotene. However, the corresponding mathematical models to guide optimized production of β-carotene in Dunaliella salina (D. salina) are not yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth and β-carotene production in D. salina using online monitoring system. Moreover, the identification model of the parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sensitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic model is characterized by high accuracy and predictability through experimental verification, which indicates its competence for future process design, control, and optimization. Based on the model established in this study, the optimal environmental factors for both β-carotene production and microalgae growth were identified. The approaches created are potentially useful for microalga Dunaliella salina cultivation and high-value β-carotene production.
Collapse
Affiliation(s)
- Yimei Xi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiali Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jian Che
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd, Dalian, 116200, China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Denny MW, Dowd WW. Physiological Consequences of Oceanic Environmental Variation: Life from a Pelagic Organism's Perspective. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:25-48. [PMID: 34314598 DOI: 10.1146/annurev-marine-040221-115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To better understand life in the sea, marine scientists must first quantify how individual organisms experience their environment, and then describe how organismal performance depends on that experience. In this review, we first explore marine environmental variation from the perspective of pelagic organisms, the most abundant life forms in the ocean. Generation time, the ability to move relative to the surrounding water (even slowly), and the presence of environmental gradients at all spatial scales play dominant roles in determining the variation experienced by individuals, but this variation remains difficult to quantify. We then use this insight to critically examine current understanding of the environmental physiology of pelagic marine organisms. Physiologists have begun to grapple with the complexity presented by environmental variation, and promising frameworks exist for predicting and/or interpreting the consequences for physiological performance. However, new technology needs to be developed and much difficult empirical work remains, especially in quantifying response times to environmental variation and the interactions among multiple covarying factors. We call on the field of global-change biology to undertake these important challenges.
Collapse
Affiliation(s)
- Mark W Denny
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
6
|
Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions. ENERGIES 2021. [DOI: 10.3390/en14051246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Energy-storage metabolites such as neutral lipids and carbohydrates are valuable compounds for liquid biofuel production. The aim of this work is to elucidate the main biological responses of two algae species known for their effective energy-rich compound accumulation in nitrogen limitation and day–night cycles: Nannochloropsis gaditana, a seawater species, and Parachlorella kessleri, a freshwater species. Lipid and carbohydrate production are investigated, as well as cell resistance to mechanical disruption for energy-rich compound release. Nitrogen-depleted N. gaditana showed only a low consumption of energy-storage molecules with a non-significant preference for neutral lipids (TAG) and carbohydrates in day–night cycles. However, it did accumulate significantly fewer carbohydrates than P. kessleri. Following this, the highest levels of productivity for N. gaditana in chemostat cultures at four levels of nitrogen limitation were found to be 3.4 and 2.2 × 10−3 kg/m2·d for carbohydrates and TAG, respectively, at 56%NO3 limitation. The cell disruption rate of N. gaditana decreased along with nitrogen limitation, from 75% (at 200%NO3) to 17% (at 13%NO3). In the context of potentially recoverable energy for biofuels, P. kessleri showed good potential for biodiesel and high potential for bioethanol; by contrast, N. gaditana was found to be more efficient for biodiesel production only.
Collapse
|
7
|
|
8
|
Enhancing PUFA-rich polar lipids in Tisochrysis lutea using adaptive laboratory evolution (ALE) with oscillating thermal stress. Appl Microbiol Biotechnol 2020; 105:301-312. [PMID: 33201276 DOI: 10.1007/s00253-020-11000-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution is a powerful tool for microorganism improvement likely to produce enhanced microalgae better tailored to their industrial uses. In this work, 12 wild-type strains of Tisochrysis lutea were co-cultivated under increasing thermal stress for 6 months. Indeed, temperature was oscillating daily between a high and a low temperature, with increasing amplitude along the experiment. The goal was to enhance the polyunsaturated fatty acid content of the polar lipids. Samples were taken throughout the evolution experiment and cultivated in standardized conditions to analyze the evolution of the lipid profile. Genomic analysis of the final population shows that two strains survived. The lipid content doubled, impacting all lipid classes. The fatty acid analyses show a decrease in SFAs correlated with an increase in monounsaturated fatty acids (MUFAs), while changes in polyunsaturated fatty acid (PUFAs) vary between both photobioreactors. Hence, the proportion of C18-MUFAs (18:1 n-9) and most C18-PUFAs (18:2 n-6, 18:3 n-3, and 18:4 n-3) increased, suggesting their potential role in adjusting membrane fluidity to temperature shifts. Of particular interest, DHA in polar lipids tripled in the final population while the growth rate was not affected. KEY POINTS: • Adaptive laboratory evolution on a mix of 12 T. lutea strains led to survival of 2 • Thermal stress impacted cell size, total lipid cell content, and all lipid classes • DHA cell content partitioned to polar lipids tripled throughout the experiment.
Collapse
|
9
|
Xi Y, Wang J, Xue S, Chi Z. β-Carotene Production from Dunaliella salina Cultivated with Bicarbonate as Carbon Source. J Microbiol Biotechnol 2020; 30:868-877. [PMID: 32238762 PMCID: PMC9728381 DOI: 10.4014/jmb.1910.10035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Bicarbonate has been considered as a better approach for supplying CO2 to microalgae cells microenvironments than gas bubbling owing t°Cost-effectiveness and easy operation. However, the β-carotene production was too low in Dunaliella salina cultivated with bicarbonate in previous studies. Also, the difference in photosynthetic efficiency between these tw°Carbon sources (bicarbonate and CO2) has seldom been discussed. In this study, the culture conditions, including NaHCO3, Ca2+, Mg2+ and microelement concentrations, were optimized when bicarbonate was used as carbon source. Under optimized condition, a maximum biomass concentration of 0.71 g/l and corresponding β-carotene content of 4.76% were obtained, with β-carotene yield of 32.0 mg/l, much higher than previous studies with NaHCO3. Finally, these optimized conditions with bicarbonate were compared with CO2 bubbling by online monitoring. There was a notable difference in Fv/Fm value between cultivations with bicarbonate and CO2, but there was no difference in the Fv/Fm periodic changing patterns. This indicates that the high concentration of NaHCO3 used in this study served as a stress factor for β-carotene accumulation, although high productivity of biomass was still obtained.
Collapse
Affiliation(s)
- Yimei Xi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jinghan Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
10
|
Zhu QL, Zheng JL, Liu J. Transcription activation of β-carotene biosynthetic genes at the initial stage of stresses as an indicator of the increased β-carotene accumulation in isolated Dunaliella salina strain GY-H13. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105472. [PMID: 32203794 DOI: 10.1016/j.aquatox.2020.105472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
β-carotene is an efficient antioxidant and its accumulation is an oxidative response to stressors. Dunaliella salina strain GY-H13 is rich in β-carotene under environmental stresses, which was selected as material to understand the molecular mechanism underlying β-carotene biosynthesis. Seven full length cDNA sequences in β-carotene biosynthesis pathway were cloned, including geranylgeranyl pyrophosphate synthase (GGPS), phytoene synthase (PSY), phytoene desaturase (PDS), 15-cis-zeta-carotene isomerase (ZISO), zeta-carotene desaturase (ZDS), prolycopene isomerase (CRTISO), lycopene beta-cyclase (LCYb). The seven protein sequences from the strain GY-H13 showed the highest similarity with other D. salina strains. Especially, PSY, PDS and LCYb protein sequences shared 100 % identity. Phylogenetic analysis indicated all proteins from GY-H13 firstly clustered with those from other D. salina strains with a bootstrap of 100 %. Multiple alignment indicated several distinct conserved motifs such as aspartate-rich domain (ARD), dinucleotide binding domain (DBD), and carotene binding domain (CBD). These motifs are located near ligand-binding pocket, which may be required for the activity of enzyme. Expression levels of these genes and β-carotene content were measured over 24-h cycle, showing clear daily dynamics. All genes were dramatically up-regulated in the morning but the highest accumulation of β-carotene was observed at noon, suggesting a lag-effect between gene transcription and biological response. Furthermore, the accumulation of β-carotene increased under nitrogen deficiency, Cd exposure and high light and decreased under high salinity in a time-dependent manner. No gene of β-carotene biosynthesis was up-regulated by high salinity while most genes were activated by the other stresses at the beginning stage of exposure. Growth inhibition and oxidative damage were also observed under high salinity. Overall, transcription activation of β-carotene biosynthetic genes at the initial stage of stress exposure is a determinant of the increased accumulation of β-carotene in microalgae, which help their survive under harsh environments. The newly isolated D. salina strain GY-H13 would be a promising microalgae model for investigating the molecular mechanism of stress-induced β-carotene biosynthesis.
Collapse
Affiliation(s)
- Qing-Ling Zhu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Ocean Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jianhua Liu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Ocean Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
11
|
Zarkami R, Hesami H, Sadeghi Pasvisheh R. Assessment, monitoring and modelling of the abundance of Dunaliella salina Teod in the Meighan wetland, Iran using decision tree model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:172. [PMID: 32040638 DOI: 10.1007/s10661-020-8148-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The microalga Dunaliella salina has been broadly studied for different purposes such as beta-carotene production, toxicity assessment and salinity tolerance, yet research on the habitat suitability of this alga has rarely been reported. The present research aims to apply a suitable monitoring and modelling methods (two critical steps in ecological researches) to predict the abundance of D. salina. The abundance of D. salina was predicted by decision tree model (J48 algorithm) in 10 different monitoring sites during 1-year study period (2016-2017) in the Meighan wetland, one of the valuable hypersaline wetlands in Iran. The abundance of alga (as output of model) together with various water quality and physical-habitat wetland characteristics (as inputs of model) were monthly and repeatedly monitored in two different depths (one from the surface layer and another one from the depth of maximum 50 cm) which in total resulted in 240 instances (120 instances for each depth). Based on trial and error, a sevenfold cross-validation resulted in the highest predictive performances of the model (CCI > 75% and Cohen's Kappa > 0.65). According to the model's prediction, the number of sunny hours might be one of the most important driving parameters to meet the habitat requirements of alga in the hypersaline wetland. Model also predicted that an increase in dissolved oxygen and sodium concentrations might increase the abundance of D. salina in the salt wetland. In contrast, an increase in total suspended solids concentration and monthly precipitation might lead to a decrease in the abundance of alga. Chi-square test of independence showed a significant difference between the abundance of the D. salina and spatio-temporal patterns in the wetland (Pearson chi-square statistic = 221.7, p = 0.001) so warm seasons (spring and summer) had more contribution to the sampling of the species than cold seasons (autumn and winter). The difference in the abundance of the species in different sampling sites can be attributed due to the various anthropogenic activities.
Collapse
Affiliation(s)
- Rahmat Zarkami
- Department of Environmental Science, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran.
| | - Hedieh Hesami
- Department of Environmental Science, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| | - Roghayeh Sadeghi Pasvisheh
- Department of Plants and Crops, Faculty of Bio-Science Engineering, Ghent University, Coupure Links, 653, 9000, Ghent, Belgium
| |
Collapse
|
12
|
Gour RS, Garlapati VK, Kant A. Effect of Salinity Stress on Lipid Accumulation in Scenedesmus sp. and Chlorella sp.: Feasibility of Stepwise Culturing. Curr Microbiol 2020; 77:779-785. [DOI: 10.1007/s00284-019-01860-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022]
|
13
|
Gaidarenko O, Sathoff C, Staub K, Huesemann MH, Vernet M, Hildebrand M. Timing is everything: Diel metabolic and physiological changes in the diatom Cyclotella cryptica grown in simulated outdoor conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gonçalves CF, Menegol T, Rech R. Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Molino A, Iovine A, Casella P, Mehariya S, Chianese S, Cerbone A, Rimauro J, Musmarra D. Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2436. [PMID: 30388801 PMCID: PMC6266511 DOI: 10.3390/ijerph15112436] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/20/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
The exploration of new food sources and natural products is the result of the increase in world population as well as the need for a healthier diet; in this context, microalgae are undoubtedly an interesting solution. With the intent to enhance their value in new commercial applications, this paper aims to characterize microalgae that have already been recognized as safe or authorized as additives for humans and animals (Chlorella vulgaris, Arthrospira platensis, Haematococcus pluvialis, Dunaliella salina) as well as those that have not yet been marketed (Scenedesmus almeriensis and Nannocholoropsis sp.). In this scope, the content of proteins, carbohydrates, lipids, total dietary fiber, humidity, ash, and carotenoids has been measured via standard methods. In addition, individual carotenoids (beta-carotene, astaxanthin, and lutein) as well as individual saturated, monounsaturated, and polyunsaturated fatty acids have been identified and quantified chromatographically. The results confirm the prerogative of some species to produce certain products such as carotenoids, polyunsaturated fatty acids, and proteins, but also show how their cellular content is rich and diverse. H. pluvialis green and red phases, and Nannochloropsis sp., in addition to producing astaxanthin and omega-3, contain about 25⁻33% w/w proteins on a dry basis. D. salina is rich in beta-carotene (3.45% w/w on a dry basis), S. Almeriensis is a source of lutein (0.30% w/w on a dry basis), and the C. vulgaris species is a protein-based microalgae (45% w/w on a dry basis). All, however, can also produce important fatty acids such as palmitic acid, γ-linolenic acid, and oleic acid. Considering their varied composition, these microalgae can find applications in multiple sectors. This is true for microalgae already on the market as well as for promising new sources of bioproducts such as S. almeriensis and Nannochloropsis sp.
Collapse
Affiliation(s)
- Antonio Molino
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
| | - Angela Iovine
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| | - Patrizia Casella
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
| | - Sanjeet Mehariya
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| | - Antonietta Cerbone
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| | - Juri Rimauro
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| |
Collapse
|
16
|
Sánchez Roque Y, Pérez-Luna YDC, Moreira Acosta J, Farrera Vázquez N, Berrones Hernández R, Saldaña Trinidad S, Pathiyamattom JS. Evaluation of the population dynamics of microalgae isolated from the state of Chiapas, Mexico with respect to the nutritional quality of water. Biodivers Data J 2018:e28496. [PMID: 30294208 PMCID: PMC6170526 DOI: 10.3897/bdj.6.e28496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022] Open
Abstract
As Chiapas state, México, counts on an extensive hydrography with diverse nutrimental and climatic characteristics, it therefore allows isolating and identifying microalgae with bioenergetics potential. For this purpose, samples from 8 locations were collected, corresponding to 6 rivers, a wastewater and a springwater. The isolation of microalgae was developed for 4 weeks with 12:12 light/dark cycles. We demonstrated that the most efficient means for the isolation of microalgae of the hydrographic areas evaluated was the medium BG11 with 80.53% effectiveness. Of the microalgal consortium identified, 90% are composed of microalgae belonging to the class Chlorophycear. It was shown that another factor favouring the richness of morphotypes identified in the Santo Domingo River is associated with adequate concentrations of macroelements such as nitrates, nitrites, ammonium, phosphorus, sodium, potassium, magnesium and calcium at concentrations of 0.03 mg/l, 0.0006 mg/l, 0.08 mg/l, 0.03 mg/l, 62.93 mg/l, 5.46 mg/l, 34.52 mg/l and 48.78 mg/l respectively and microelements such as copper, zinc, iron, andmanganese at concentrations less than 0.2 mg/l in all microelements. The identified morphotypes, according to literature, have lipid contents ranging from 2 to 90%; this is of biotechnological importance for the production of biodiesel.
Collapse
Affiliation(s)
- Yazmin Sánchez Roque
- Universidad Politécnica de Chiapas, Suchiapa, Mexico Universidad Politécnica de Chiapas Suchiapa Mexico
| | | | - Joel Moreira Acosta
- Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Mexico Universidad de Ciencias y Artes de Chiapas Tuxtla Gutiérrez Mexico
| | - Neín Farrera Vázquez
- Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Mexico Universidad de Ciencias y Artes de Chiapas Tuxtla Gutiérrez Mexico
| | | | - Sergio Saldaña Trinidad
- Universidad Politécnica de Chiapas, Suchiapa, Mexico Universidad Politécnica de Chiapas Suchiapa Mexico
| | | |
Collapse
|
17
|
Pavón-Suriano SG, Ortega-Clemente LA, Curiel-Ramírez S, Jiménez-García MI, Pérez-Legaspi IA, Robledo-Narváez PN. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21332-21340. [PMID: 28741207 DOI: 10.1007/s11356-017-9764-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The production of biofuels from microalgae is a promising and sustainable alternative. Its production is determined by the content of lipids and carbohydrates, which is different for each microalgae species and is affected by environmental factors, being lighting one of the principal determining their biochemical composition. The colour temperature (electromagnetic radiation and light spectrum) is a determining factor for the production of lipids and carbohydrates in microalgae. The aim of this assay was to evaluate the effect of three colour temperatures (6500, 10,000 and 20,000 °K) on the biomass (cel mL-1), biomass production and productivity (g L-1 and g L-1 day-1), lipid and carbohydrate content (%), lipid and carbohydrate production and productivity (mg L-1 and mg L-1 day-1), composition and content of fatty acids (%) in two microalgae species: Dunaliella salina and Nannochloropsis oculata. The highest cell density was observed for N. oculata in stationary phase in the control (83.93 × 106 cel mL-1). However, higher lipid content was obtained in D. salina in stationary phase at 10,000 °K (80%), while N. oculata showed 67% at 6500 °K. The highest carbohydrate content was 25% in stationary phase for D. salina at 20,000 °K. Regarding the production of lipids, D. salina reached a maximum of 523 mg L-1 in exponential phase at 6500 and 10,000 °K. The highest carbohydrate production was 38 mg L-1 for D. salina in exponential phase at 20,000 °K. In both microalgae, 15 different fatty acids were identified; the most abundant was palmitic acid with 35.8% for N. oculata in stationary phase at 10,000 °K, while D. salina showed 67% of polyunsaturated fatty acids in exponential phase at 6500 °K. In conclusion, the ideal colour temperature for microalgae culture to obtain biofuels should be based on the biomolecule of interest, being necessary to individually evaluate for each species.
Collapse
Affiliation(s)
- Salim Gabriel Pavón-Suriano
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico
| | - Luis Alfredo Ortega-Clemente
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico.
| | - Sergio Curiel-Ramírez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas C.P. 22860 en, Ensenada, Baja California, Mexico
| | - María Isabel Jiménez-García
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico
| | - Ignacio Alejandro Pérez-Legaspi
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico
| | - Paula Natalia Robledo-Narváez
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Tierra Blanca, Maestría en Ciencias de los Alimentos y Biotecnología, Avenida Veracruz S/n Esquina Héroes de Puebla Colonia Pemex, Tierra Blanca, Veracruz, Mexico
| |
Collapse
|
18
|
Willette S, Gill SS, Dungan B, Schaub TM, Jarvis JM, St. Hilaire R, Omar Holguin F. Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Béchet Q, Coulombier N, Vasseur C, Lasserre T, Le Dean L, Bernard O. Full-scale validation of an algal productivity model including nitrogen limitation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Kings AJ, Raj RE, Miriam LRM, Visvanathan MA. Growth studies on microalgae Euglena sanguinea in various natural eco-friendly composite media to optimize the lipid productivity. BIORESOURCE TECHNOLOGY 2017; 244:1349-1357. [PMID: 28688736 DOI: 10.1016/j.biortech.2017.06.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The environmental and culture conditions of a potential microalgae Euglena sanguinea were optimized for maximizing the biomass productivity. It was found that the organic macronutrient from poultry litter and organic micronutrient of seaweed extract are very effective to enhance the lipid production. Complementing, these organic nutrients with commercial NPK fertilizer, boost up the lipid productivity by 30.9% in comparison with the established standard Euglena medium. The fatty acid profile of the extracted oil by GC-MS reveals its conformity with commercial diesel.
Collapse
Affiliation(s)
- Ajith J Kings
- Department of Mechanical Engineering, St. Xavier's Catholic College of Engineering, Nagercoil 629003, India
| | - R Edwin Raj
- Department of Mechanical Engineering, St. Xavier's Catholic College of Engineering, Nagercoil 629003, India
| | - L R Monisha Miriam
- Department of Biotechnology, Udaya School of Engineering, Vellamodi 629204, India.
| | - M Adhi Visvanathan
- Pinnacle Biosciences, Algae Research and Development Center, South Thamaraikulam 629708, India
| |
Collapse
|
21
|
Kooi M, Nes EHV, Scheffer M, Koelmans AA. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7963-7971. [PMID: 28613852 PMCID: PMC6150669 DOI: 10.1021/acs.est.6b04702] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 05/18/2023]
Abstract
Recent studies suggest size-selective removal of small plastic particles from the ocean surface, an observation that remains unexplained. We studied one of the hypotheses regarding this size-selective removal: the formation of a biofilm on the microplastics (biofouling). We developed the first theoretical model that is capable of simulating the effect of biofouling on the fate of microplastic. The model is based on settling, biofilm growth, and ocean depth profiles for light, water density, temperature, salinity, and viscosity. Using realistic parameters, the model simulates the vertical transport of small microplastic particles over time, and predicts that the particles either float, sink to the ocean floor, or oscillate vertically, depending on the size and density of the particle. The predicted size-dependent vertical movement of microplastic particles results in a maximum concentration at intermediate depths. Consequently, relatively low abundances of small particles are predicted at the ocean surface, while at the same time these small particles may never reach the ocean floor. Our results hint at the fate of "lost" plastic in the ocean, and provide a start for predicting risks of exposure to microplastics for potentially vulnerable species living at these depths.
Collapse
Affiliation(s)
- Merel Kooi
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- E-mail:
| | - Egbert H. van Nes
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Marten Scheffer
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Albert A. Koelmans
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen Marine
Research, P.O. Box 68, 1970 AB IJmuiden, The Netherlands
| |
Collapse
|
22
|
Bonnefond H, Moelants N, Talec A, Mayzaud P, Bernard O, Sciandra A. Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:25. [PMID: 28163782 PMCID: PMC5282863 DOI: 10.1186/s13068-017-0713-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/18/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Nitrogen starvation and limitation are known to induce important physiological changes especially in lipid metabolism of microalgae (triglycerides, membrane lipids, beta-carotene, etc.). Although little information is available for Dunaliella salina, it is a promising microalga for biofuel production and biotechnological applications due to its ability to accumulate lipid together with beta-carotene. RESULTS Batch and chemostat experiments with various degrees of nitrogen limitation, ranging from starvation to nitrogen-replete conditions, were carried out to study carbon storage dynamics (total carbon, lipids, and beta-carotene) in steady state cultures of D. salina. A new protocol was developed in order to manage the very high beta-carotene concentrations and to more accurately separate and quantify beta-carotene and triglycerides by chromatography. Biomass evolution was appropriately described by the Droop model on the basis of the nitrogen quota dynamics. CONCLUSIONS Triglycerides and beta-carotene were both strongly anti-correlated with nitrogen quota highlighting their carbon sink function in nitrogen depletion conditions. Moreover, these two valuable molecules were correlated each other for nitrogen replete conditions or moderated nitrogen limitations (N:C ratio higher than 0.04). Under nitrogen starvation, i.e., for very low N:C ratio, the dynamic revealed, for the first time, uncoupled part (higher triglyceride accumulation than beta-carotene), possibly because of shortage in key proteins involved in the stabilization of lipid droplets. This study motivates the accurate control of the microalgal nitrogen quota in order to optimize lipid productivity.
Collapse
Affiliation(s)
- Hubert Bonnefond
- UPMC Univ Paris 06, INSU-CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Universités, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
- INRIA, BIOCORE, Université Nice Côte d’Azur, 06902 Sophia Antipolis, France
| | - Nina Moelants
- UPMC Univ Paris 06, INSU-CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Universités, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - Amélie Talec
- UPMC Univ Paris 06, INSU-CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Universités, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - Patrick Mayzaud
- UPMC Univ Paris 06, INSU-CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Universités, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - Olivier Bernard
- INRIA, BIOCORE, Université Nice Côte d’Azur, 06902 Sophia Antipolis, France
| | - Antoine Sciandra
- UPMC Univ Paris 06, INSU-CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Universités, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
- INRIA, BIOCORE, Université Nice Côte d’Azur, 06902 Sophia Antipolis, France
| |
Collapse
|