1
|
Soriano-Jerez Y, Gallardo-Rodríguez JJ, López-Rosales L, García-Camacho F, Bressy C, Molina-Grima E, Cerón-García MC. Preventing biofouling in microalgal photobioreactors. BIORESOURCE TECHNOLOGY 2024; 407:131125. [PMID: 39025371 DOI: 10.1016/j.biortech.2024.131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Photobioreactors (PBRs) are used to grow the light-requiring microalgae in diverse commercial processes. Often, they are operated as continuous culture over months period. However, with time, biofouling layer develops on the inner surfaces of their walls. The fouling layer formation deteriorates the PBR performance as foulants reduce light penetration in it. Light is essential for photosynthetic cultures, and a deterioration in lighting adversely impacts algae growth and biomass productivity. Fouling requires a frequent shutdown to clean the PBR and add to the environmental impact of the operation by generating many wastewaters contaminated with the cleaning chemicals. Antibiofouling coatings could be used to modify the surfaces of existing and future PBRs. Therefore, transparent and non-toxic fouling-release coatings, produced using hydrogel technology, could transform the existing PBRs into efficient and enduring microalgae culture systems, requiring only the application of the coating to the inner walls, without additional investments in new PBRs.
Collapse
Affiliation(s)
- Y Soriano-Jerez
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - J J Gallardo-Rodríguez
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - C Bressy
- Université de Toulon, MAPIEM, Toulon, France
| | - E Molina-Grima
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - M C Cerón-García
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| |
Collapse
|
2
|
Ma C, Qu W, Ho SH, Li J, Li F, Yi L. Effects of microalgal (Tetradesmus obliquus MCX38) attachment on photobioreactor treatment efficiency of raw swine wastewater. BIORESOURCE TECHNOLOGY 2024; 403:130866. [PMID: 38777231 DOI: 10.1016/j.biortech.2024.130866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Attachment of microalgae on the inner surfaces of photobioreactors impacts the efficiency of swine wastewater treatment by reducing the light intensity, which has been overlooked in previous studies. This study investigated the relationship between microalgal attachment biomass and light intensity in photobioreactors, determined the optimal attachment time for effective pollutant removal, and clarified the mechanisms of microalgal attachment in swine wastewater. After 9 days of treatment, the attached biomass in the photobioreactor increased from 0 to 6.4 g/m2, decreasing the light intensity from 2,000 to 936 lux. At the 24 h optimal attachment time, the concentrations of chemical oxygen demand, ammonia nitrogen, and total phosphorus decreased from 2725.1, 396.4, and 87.2 mg/L to 361.2, 4.9, and 0.8 mg/L, respectively. Polysaccharides in the extracellular polymeric substances released by microalgae play a significant role in facilitating microalgae attachment. Optimizing the microalgal attachment time within photobioreactors effectively mitigates pollutant concentrations in swine wastewater.
Collapse
Affiliation(s)
- Chengxiao Ma
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Wenying Qu
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Fadong Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100190, Beijing, China.
| | - Lijuan Yi
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
3
|
Soriano-Jerez Y, Macías-de la Rosa A, García-Abad L, López-Rosales L, Maza-Márquez P, García-Camacho F, Bressy C, Cerón-García MC, Molina-Grima E. Transparent antibiofouling coating to improve the efficiency of Nannochloropsis gaditana and Chlorella sorokiniana culture photobioreactors at the pilot-plant scale. CHEMOSPHERE 2024; 347:140669. [PMID: 37967681 DOI: 10.1016/j.chemosphere.2023.140669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The implementation of industrial-scale facilities for microalgae cultivation is limited due to the high operation costs. One of the main problems in obtaining an efficient and long-lasting microalgae culture system is biofouling. The particular issue when developing antibiofouling surfaces for microalgae cultures is that the material must be transparent. The main purpose of this work was to evaluate the antibiofouling efficiency of a non-toxic polydimethylsiloxane-based coating prepared with polyethylene glycol-based copolymer on different photobioreactors at the pilot-plant scale. The antifouling properties result from the development of a fouling-release coating utilizing hydrogel technology. Nannochloropsis gaditana and Chlorella sorokiniana were cultured outdoors for 3 months over the summer, when biofouling formation is at its highest due to environmental conditions, to test the coating's antibiofouling efficiency. Although biofouling was not completely prevented in either photobioreactor, the coating significantly reduced cell adhesion compared to the polydimethylsiloxane control (70% less adhesion). Therefore, this coating was shown to be a good alternative for constructing efficient closed-photobioreactors at the pilot-plant scale, at least for cultures lasting 3 months.
Collapse
Affiliation(s)
- Y Soriano-Jerez
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - A Macías-de la Rosa
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - L García-Abad
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - P Maza-Márquez
- Department of Microbiology and Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain
| | - F García-Camacho
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - C Bressy
- Laboratoire MAPIEM, U.R. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS, 60584, 83041, Toulon, Cedex 9, France
| | - M C Cerón-García
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - E Molina-Grima
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| |
Collapse
|
4
|
Soriano-Jerez Y, García-Abad L, Cerón-García MDC, Gallardo-Rodríguez JJ, Bressy C, García-Camacho F, Molina-Grima E. Long-lasting biofouling formation on transparent fouling-release coatings for the construction of efficient closed photobioreactors. BIOFOULING 2023; 39:483-501. [PMID: 37394974 DOI: 10.1080/08927014.2023.2228208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
In order to build an efficient closed-photobioreactor (PBR) in which biofouling formation is avoided, a non-toxic coating with high transparency is required, which can be applied to the interior surface of the PBR walls. Nowadays, amphiphilic copolymers are being used to inhibit microorganism adhesion, so poly(dimethylsiloxane)-based coatings mixed with poly(ethylene glycol)-based copolymers could be a good option. The 7 poly(dimethylsiloxane)-based coatings tested in this work contained 4% w/w of poly(ethylene glycol)-based copolymers. All were a good alternative to glass because they presented lower cell adhesion. However, the DBE-311 copolymer proved the best option due to its very low cell adhesion and high transmittance. Furthermore, XDLVO theory indicates that these coatings should have no cell adhesion at time 0 since they create a very high-energy barrier that microalgae cells cannot overcome. Nevertheless, this theory also shows that their surface properties change over time, making cell adhesion possible on all coatings after 8 months of immersion. The theory is useful in explaining the interaction forces between the surface and microalgae cells at any moment in time, but it should be complemented with models to predict the conditioning film formation and the contribution of the PBR's fluid dynamics over time.
Collapse
Affiliation(s)
- Yolanda Soriano-Jerez
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Lucía García-Abad
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | | | | | - Christine Bressy
- Laboratoire MAPIEM, U.R. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, La Valette-du-Var, France
| | - Francisco García-Camacho
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Emilio Molina-Grima
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
5
|
García-Abad L, Soriano-Jerez Y, Cerón-García MDC, Muñoz-Bonilla A, Fernández-García M, García-Camacho F, Molina-Grima E. Adsorption Analysis of Exopolymeric Substances as a Tool for the Materials Selection of Photobioreactors Manufacture. Int J Mol Sci 2022; 23:ijms232213924. [PMID: 36430401 PMCID: PMC9697444 DOI: 10.3390/ijms232213924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
An improved method that allows the robust characterization of surfaces is necessary to accurately predict the biofouling formation on construction materials of photobioreactors (PBR). Exopolymeric substances (EPS), such as proteins and polysaccharides, have been demonstrated to present a similar behavior to cells in terms of surface adhesion. In this work, these EPS were used to optimize parameters, such as EPS concentration or adsorption time, to evaluate accurately the adsorption capacity of surfaces and, with it, predict the biofouling formation in contact with microalgae cultures. Once the method was optimized, the characterization of seven commercial polymeric surfaces was submitted to different abrasive particles sizes, which modified the roughness of the samples, as well as protein and polysaccharide lawns, which were prepared and carried out in order to evaluate the characteristics of these substances. The characterization consisted of the determination of surface free energy, water adhesion tension, and critical tension determined from the measurement of the contact angle, roughness, surface zeta potential, and the EPS adhesion capacity of each material. This will be useful to understand the behavior of the surface in the function of its characteristics and the interaction with the solutions of EPS, concluding that the hydrophobic and smooth surfaces present good anti-biofouling characteristics.
Collapse
Affiliation(s)
- Lucía García-Abad
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| | - Yolanda Soriano-Jerez
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| | - María del Carmen Cerón-García
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
- Correspondence: (M.d.C.C.-G.); (M.F.-G.)
| | | | - Marta Fernández-García
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain
- Correspondence: (M.d.C.C.-G.); (M.F.-G.)
| | - Francisco García-Camacho
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| | - Emilio Molina-Grima
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| |
Collapse
|
6
|
García-Abad L, López-Rosales L, Cerón-García MDC, Fernández-García M, García-Camacho F, Molina-Grima E. Influence of abiotic conditions on the biofouling formation of flagellated microalgae culture. BIOFOULING 2022; 38:507-520. [PMID: 35729852 DOI: 10.1080/08927014.2022.2089564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
This work analyses the adhesion of flagellated microalgae to seven surfaces that have different water adhesion tension characteristics. Chlamydomonas reinhardtii and Isochrysis galbana, were cultivated in batch and fed-batch mode at four nitrogen/phosphorus (N/P) ratios (from 1.29 to 70) and subjected to four irradiance levels (50, 100, 200 and 400 µE·s-1·m-2) at 23 °C. Cell adhesion was greater in C. reinhardtii and a higher biomass concentration was obtained for this strain, reaching 2 g·L-1 compared to 1 g·L-1 for I. galbana. The adhesion of cells and exopolymeric substances was measured upon the batch and the first fed-batch reaching the stationary growth phase, observing a direct correlation between them and inversely to biomass generation in the cultures. The protein adhesion data for the different materials are comparable to those for cell adhesion coinciding with minimums of Baier's theory and Vogler. It is observed displacements in the curves as a function of the irradiance level.
Collapse
Affiliation(s)
- Lucía García-Abad
- Chemical Engineering Department, University of Almería, Almería, Spain
| | - Lorenzo López-Rosales
- Chemical Engineering Department, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, Almería, Spain
| | - María Del Carmen Cerón-García
- Chemical Engineering Department, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, Almería, Spain
| | - Marta Fernández-García
- Chemistry and Properties of Polimeric Materials Department, Institute of Polymer Science and Technology (ICT P-CSIC), Madrid, Spain
| | - Francisco García-Camacho
- Chemical Engineering Department, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, Almería, Spain
| | - Emilio Molina-Grima
- Chemical Engineering Department, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, Almería, Spain
| |
Collapse
|
7
|
Xi Y, Zhang J, Kong F, Che J, Chi Z. Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina. BIORESOUR BIOPROCESS 2022; 9:4. [PMID: 38647742 PMCID: PMC10991233 DOI: 10.1186/s40643-022-00495-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/08/2022] [Indexed: 12/31/2022] Open
Abstract
Dunaliella salina is a green microalga with the great potential to generate natural β-carotene. However, the corresponding mathematical models to guide optimized production of β-carotene in Dunaliella salina (D. salina) are not yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth and β-carotene production in D. salina using online monitoring system. Moreover, the identification model of the parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sensitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic model is characterized by high accuracy and predictability through experimental verification, which indicates its competence for future process design, control, and optimization. Based on the model established in this study, the optimal environmental factors for both β-carotene production and microalgae growth were identified. The approaches created are potentially useful for microalga Dunaliella salina cultivation and high-value β-carotene production.
Collapse
Affiliation(s)
- Yimei Xi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiali Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jian Che
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd, Dalian, 116200, China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Impacts of UV-C irradiation on marine biofilm community succession. Appl Environ Microbiol 2021; 88:e0229821. [PMID: 34936837 DOI: 10.1128/aem.02298-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine biofilms are diverse microbial communities and important ecological habitats forming on surfaces submerged in the ocean. Biofilm communities resist environmental disturbance, making them a nuisance to some human activities ('biofouling'). Anti-fouling solutions rarely address the underlying stability or compositional responses of these biofilms. Using bulk measurements and molecular analyses, we examined temporal and UV-C antifouling-based shifts in marine biofilms in the coastal Western North Atlantic Ocean during early fall. Over a 24-d period, bacterial communities shifted from early dominance of Gammaproteobacteria to increased proportions of Alphaproteobacteria, Bacteroidia and Acidimicrobiia. In a network analysis based on temporal covariance, Rhodobacteraceae (Alphaproteobacteria) nodes were abundant and densely connected with generally positive correlations. In the eukaryotic community, persistent algal, protistan, and invertebrate groups were observed, although consistent temporal succession was not detected. Biofilm UV-C treatment at 13 and 20 days resulted in losses of chlorophyll a and transparent exopolymer particles, indicating biomass disruption. Bacterial community shifts suggested that UV-C treatment decreased biofilm maturation rate and was associated with proportional shifts among diverse bacterial taxa. UV-C treatment was also associated with increased proportions of protists potentially involved in detritivory and parasitism. Older biofilm communities had increased resistance to UV-C, suggesting that early biofilms are more susceptible to UV-C based antifouling. The results suggest that UV-C irradiation is potentially an effective antifouling method in marine environments in terms of biomass removal and in slowing maturation. However, as they mature, biofilm communities may accumulate microbial members that are tolerant or resilient under UV-treatment. Importance Marine biofilms regulate processes from organic matter and pollutant turnover to eukaryotic settlement and growth. Biofilm growth and eukaryotic settlement interfering with human activities via growth on ship hulls, aquaculture operations, or other marine infrastructure are called 'biofouling'. There is a need to develop sustainable anti-fouling techniques by minimizing impacts to surrounding biota. We use the biofouling-antifouling framework to test hypotheses about marine biofilm succession and stability in response to disturbance, using a novel UV-C LED device. We demonstrate strong bacterial biofilm successional patterns and detect taxa potentially contributing to stability under UV-C stress. Despite UV-C-associated biomass losses and varying UV susceptibility of microbial taxa, we detected high compositional resistance among biofilm bacterial communities, suggesting decoupling of disruption in biomass and community composition following UV-C irradiation. We also report microbial covariance patterns over 24 days of biofilm growth, pointing to areas for study of microbial interactions and targeted antifouling.
Collapse
|
9
|
Molina-Grima E, García-Camacho F, Acién-Fernández FG, Sánchez-Mirón A, Plouviez M, Shene C, Chisti Y. Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnol Adv 2021; 55:107884. [PMID: 34896169 DOI: 10.1016/j.biotechadv.2021.107884] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/09/2023]
Abstract
Production of phytoplankton (microalgae and cyanobacteria) in commercial raceway ponds and other systems is adversely impacted by phytoplankton pathogens, including bacteria, fungi and viruses. In addition, cultures are susceptible to productivity loss, or crash, through grazing by contaminating zooplankton such as protozoa, rotifers and copepods. Productivity loss and product contamination are also caused by otherwise innocuous invading phytoplankton that consume resources in competition with the species being cultured. This review is focused on phytoplankton competitors, pathogens and grazers of significance in commercial culture of microalgae and cyanobacteria. Detection and identification of these biological contaminants are discussed. Operational protocols for minimizing contamination, and methods of managing it, are discussed.
Collapse
Affiliation(s)
- Emilio Molina-Grima
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain
| | | | | | | | - Maxence Plouviez
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Carolina Shene
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
10
|
Kichouh-Aiadi S, Sánchez-Mirón A, Gallardo-Rodríguez JJ, Soriano-Jerez Y, Cerón-García MC, García-Camacho F, Molina-Grima E. CFD-based prediction of initial microalgal adhesion to solid surfaces using force balances. BIOFOULING 2021; 37:844-861. [PMID: 34538160 DOI: 10.1080/08927014.2021.1974847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Adhesion of microalgal cells to photobioreactor walls reduces productivity resulting in significant economic losses. The physico-chemical surface properties and the fluid dynamics present in the photobioreactor during cultivation are relevant. However, to date, no multiphysical model has been able to predict biofouling formation in these systems. In this work, to model the microalgal adhesion, a Computational Fluid Dynamic simulation was performed using a Eulerian-Lagrangian particle-tracking model. The adhesion criterion was based on the balance of forces and moments included in the XDLVO model. A cell suspension of the marine microalga Nannochloropsis gaditana was fed into a commercial flow cell composed of poly-methyl-methacrylate coupons for validation. Overall, the simulated adhesion criterion qualitatively predicted the initial distribution of adhered cells on the coupons. In conclusion, the combined Computational Fluid Dynamics-Discrete Phase Model (CFD-DPM) approach can be used to overcome the challenge of predicting microalgal cell adhesion in photobioreactors.
Collapse
Affiliation(s)
- S Kichouh-Aiadi
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - J J Gallardo-Rodríguez
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Y Soriano-Jerez
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - E Molina-Grima
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
11
|
Substrate properties as controlling parameters in attached algal cultivation. Appl Microbiol Biotechnol 2021; 105:1823-1835. [PMID: 33564919 DOI: 10.1007/s00253-021-11127-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
There is growing interest in attached algae cultivation systems because they could provide a more cost- and energy-efficient alternative to planktonic (suspended algae) cultivation systems for many applications. However, attached growth systems have been far less studied than planktonic systems and have largely emphasized algae strains of most interest for biofuels. New algal biorefinery pathways have assessed the commercial potentials of algal biomass beyond biofuel production and placed more emphasis on value-added products from that biomass. Therefore, algal strain selection criteria and biomass cultivation methods need to be updated to include additional strains for improved efficiency. One possible way of improving attached cultivation systems is through engineering substrate surface characteristics to boost algal adhesion and enable strain selective algal colonization and growth. This review explores the effect of substrate chemical and topographical characteristics on the cultivation of attached algae. It also highlights the importance of considering algal community structure and attachment mechanisms in investigating attached algae systems using the example of filamentous algae found in algal turf scrubber (ATS™) systems. KEY POINTS : • Attached algal cultivation is a promising alternative to planktonic cultivation. • Performance increase results from tuning surface qualities of attachment substrates. • Attachment adaptation of periphytic algae has innate potential for cultivation.
Collapse
|
12
|
Soriano-Jerez Y, López-Rosales L, Cerón-García MC, Sánchez-Mirón A, Gallardo-Rodríguez JJ, García-Camacho F, Molina-Grima E. Long-term biofouling formation mediated by extracellular proteins in Nannochloropsis gaditana microalga cultures at different medium N/P ratios. Biotechnol Bioeng 2020; 118:1152-1165. [PMID: 33236769 DOI: 10.1002/bit.27632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Biofouling represents an important limitation in photobioreactor cultures. The biofouling propensity of different materials (polystyrene, borosilicate glass, polymethyl methacrylate, and polyethylene terephthalate glycol-modified) and coatings (two spray-applied and nanoparticle-based superhydrophobic coatings and a hydrogel-based fouling release coating) was evaluated by means of a short-term protein test, using bovine serum albumin (BSA) as a model protein, and by the long-term culture of the marine microalga Nannochloropsis gaditana under practical conditions. The results from both methods were similar, confirming that the BSA test predicts microalgal biofouling on surfaces exposed to microalgae cultures whose cells secrete macromolecules, such as proteins, with a high capacity for forming a conditioning film before cell adhesion. The hydrogel-based coating showed significantly reduced BSA and N. gaditana adhesion, whereas the other surfaces failed to control biofouling. Microalgal biofouling was associated with an increased concentration of sticky extracellular proteins at low N/P ratios (below 15).
Collapse
Affiliation(s)
- Y Soriano-Jerez
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - J J Gallardo-Rodríguez
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - E Molina-Grima
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
13
|
Giraldo JB, Stock W, Dow L, Roef L, Willems A, Mangelinckx S, Kroth PG, Vyverman W, Michiels M. Influence of the algal microbiome on biofouling during industrial cultivation of Nannochloropsis sp. in closed photobioreactors. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
New insights into developing antibiofouling surfaces for industrial photobioreactors. Biotechnol Bioeng 2019; 116:2212-2222. [DOI: 10.1002/bit.27013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 01/20/2023]
|
15
|
Zeriouh O, Reinoso-Moreno J, López-Rosales L, Cerón-García M, Sánchez Mirón A, García-Camacho F, Molina-Grima E. Assessment of a photobioreactor-coupled modified Robbins device to compare the adhesion of Nannochloropsis gaditana on different materials. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zeriouh O, Reinoso-Moreno JV, López-Rosales L, Cerón-García MDC, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol 2017; 37:1006-1023. [DOI: 10.1080/07388551.2017.1299681] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ouassim Zeriouh
- Department of Chemical Engineering, University of Almería, Almería, Spain
| | | | | | - María del Carmen Cerón-García
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| | - Emilio Molina-Grima
- Department of Chemical Engineering, University of Almería, Almería, Spain
- Research Center in Agrifood Biotechnology, University of Almería, Almería, Spain
| |
Collapse
|