1
|
Dai L, Yu P, Ma P, Chen C, Ma J, Zhang J, Huang B, Xin Z, Zheng X, Tang T. Effects of the supernatant of Chlorella vulgaris cultivated under different culture modes on lettuce ( Lactuca sativa L.) growth. Front Nutr 2024; 11:1437374. [PMID: 39279893 PMCID: PMC11392778 DOI: 10.3389/fnut.2024.1437374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
CO2 capture by microalgae is a feasible strategy to reduce CO2 emissions. However, large amounts of cell-free supernatant will be produced after microalgal harvesting, which may be harmful to the environment if it is disorderly discharged. In this study, Chlorella vulgaris (C. vulgaris) was cultivated under three common cultivation modes (autotrophic culture (AC), heterotrophic culture (HC) and mixotrophic culture (MC)), and the obtained supernatant was used as fertilizer to investigate its effect on the growth of lettuce. The biomass concentration of C. vulgaris cultivated under MC and HC was 3.25 and 2.59 times that of under AC, respectively. The contents of macronutrients in supernatant obtained from AC were higher than those of MC and HC. However, the contents of amino acids and hormones in supernatant obtained from MC and HC were higher than those of AC. The fresh shoot weight, fresh root weight and root length of lettuce treated with supernatant were significantly higher than that of control treatment. In addition, the contents of chlorophyll, soluble sugar and soluble protein in lettuce treated with supernatant were also higher than that of control treatment. However, the contents of nitrate in lettuce treated with supernatant was lower than that of control treatment. These results showed that the supernatant could promote the growth of lettuce and was a potential of fertilizer for crop planting.
Collapse
Affiliation(s)
- Lin Dai
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Peng Yu
- School of Civil and Resources Engineering, Graduate School of University of Science & Technology Beijing, Beijing, China
- ChnEnergy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Pengyao Ma
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Cheng Chen
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Jun Ma
- ChnEnergy XinJiang TuoKexun Energy Co., Ltd., Xinjiang, China
| | - Jinli Zhang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Bo Huang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zhikun Xin
- ChnEnergy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Xufan Zheng
- ChnEnergy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Tao Tang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Kuzhiumparambil U, Labeeuw L, Commault A, Vu HP, Nguyen LN, Ralph PJ, Nghiem LD. Effects of harvesting on morphological and biochemical characteristics of microalgal biomass harvested by polyacrylamide addition, pH-induced flocculation, and centrifugation. BIORESOURCE TECHNOLOGY 2022; 359:127433. [PMID: 35680089 DOI: 10.1016/j.biortech.2022.127433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The effects of microalgae harvesting methods on microalgal biomass quality were evaluated using three species namely the freshwater green alga Chlorella vulgaris, marine red alga Porphyridium purpureum and marine diatom Phaeodactylum tricornutum. Harvesting efficiencies of polyacrylamide addition, alkaline addition, and centrifugation ranged from 85 to 95, 59-92 and 100%, respectively, across these species. Morphology of the harvested cells (i.e. compromised cell walls) was significantly impacted by alkaline pH-induced flocculation for all three species. Over 50% of C. vulgaris cells were compromised with alkaline pH compared to < 10% with polyacrylamide and centrifugation. The metabolic profiles varied depending on harvesting methods. Species-specific decrease of certain metabolites was observed. These results suggest that the method of harvest can alter the metabolic profile of the biomass amongst the three harvesting methods, polyacrylamide addition showed higher harvesting efficiency with less compromised cells and higher retention of industry important biochemicals.
Collapse
Affiliation(s)
| | - Leen Labeeuw
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Audrey Commault
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Wang Y, Wang J, Feng C, Li J, Wang N, Cai J. High-quality Chlorella vulgaris biomass harvesting through chitosan and polyacrylamid2e. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34651-34658. [PMID: 35040049 DOI: 10.1007/s11356-021-17847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Microalgal biomass is an emerging source of renewable energy and health-related compounds. However, harvesting of microalgae is a techno-economic hinder. In this research, chitosan and polyacrylamide were optimized harvesting condition for Chlorella vulgaris. Stirring at 300 rpm for 2 min is optimum for chitosan and polyacrylamide. Low-dose (10 mg/L) chitosan (flocculation efficiency (FE), 98.10 ± 1.06%) is more efficient than high-dose (25 mg/L) polyacrylamide (FE 94.57 ± 0.55%) for harvesting C. vulgaris. Chitosan resulted flocs settled more quickly than polyacrylamide, while polyacrylamide keep > 90% FE in a wider pH range (7-10) than chitosan (7-8). Chitosan and polyacrylamide both have no negative effect on biomass composition, including protein, carbohydrate, and carotenoid. C. vulgaris in flocs could successfully regrow in fresh culture media. The residual culture media was recycled with little impact on cell growth. All the results suggested that chitosan and polyacrylamide could harvest high-quality microalgal biomass.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Juan Wang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chenchen Feng
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jinyang Li
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Naike Wang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jinling Cai
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
4
|
Sustainable production of food grade omega-3 oil using aquatic protists: Reliability and future horizons. N Biotechnol 2021; 62:32-39. [PMID: 33486117 DOI: 10.1016/j.nbt.2021.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production of omega-3 polyunsaturated fatty acids (PUFAs) has become a commercial alternative to fish oil in the past twenty years. Compared to PUFA production by fatty fishes, that from microorganisms has increased due to its promising sustainability and high product safety and to increasing awareness in the expanding vegan market. Although autotrophic production by microalgae seems to be more sustainable in the long term, to date most of the microbial production of omega-3 is carried out under heterotrophic conditions using conventional fermentation technologies. The present review critically analyzes the main reasons for this discrepancy and reports on the recent advances and the most promising approaches for its future development in the context of sustainability and circular economy.
Collapse
|
5
|
Labeeuw L, Commault AS, Kuzhiumparambil U, Emmerton B, Nguyen LN, Nghiem LD, Ralph PJ. A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141708. [PMID: 32892040 DOI: 10.1016/j.scitotenv.2020.141708] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Flocculation is a low-cost harvesting technique for microalgae biomass production, but flocculation efficiency is species dependent. In this study, we investigated the efficacy of two synthetic (polyacrylamide) and one natural (chitosan) flocculants against three algal species: the cyanobacterium Synechocystis sp., the freshwater Chlorella vulgaris, and the marine Phaeodactylum tricornutum at laboratory and pilot scales to evaluate harvesting efficiency, biomass integrity and media recycling. Growth phase affected the harvesting efficiency of the eukaryotic microalgae. The flocculation was optimal at stationary phase with high flocculation efficiency achieved using polyacrylamides at 24-36 mg/g dry weight. The effect of the flocculants on the harvested biomass was investigated. The flocculated Synechocystis sp. showed a higher proportion of compromised cells compared to C. vulgaris and P. tricornutum likely due to differences in cell walls composition. Compromised cells could lead to the release of valuable products into the surrounding growth media during flocculation. The residual culture media was recycled once with no impact on cell growth for all treatments and algal species. The flocculation technique was demonstrated at pilot-scale using 350 L microalgal suspension, showing an efficiency of 82-90% at a polyacrylamide dosage of 6.5-10 mg/L. This efficiency and the biomass quality are comparable to the laboratory-scale results. Overall, results indicate that polyacrylamide flocculants work on a wide range of species without the need for pre-treatment. The information generated in this study can contribute to making the microalgae industry more competitive.
Collapse
Affiliation(s)
- Leen Labeeuw
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia.
| | - Audrey S Commault
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| | | | - Benjamin Emmerton
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| | - Luong N Nguyen
- University of Technology Sydney, Centre for Technology in Water and Wastewater, Sydney, NSW 2007, Australia
| | - Long D Nghiem
- University of Technology Sydney, Centre for Technology in Water and Wastewater, Sydney, NSW 2007, Australia; Nguyen Tat Thanh University, NTT Institute of Hi-Technology, Ho Chi Minh City, Viet Nam
| | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| |
Collapse
|
6
|
Molina-Miras A, López-Rosales L, Sánchez-Mirón A, López-Rodríguez M, Cerón-García M, García-Camacho F, Molina-Grima E. Influence of culture medium recycling on the growth of a marine dinoflagellate microalga and bioactives production in a raceway photobioreactor. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Fret J, Roef L, Diels L, Tavernier S, Vyverman W, Michiels M. Combining medium recirculation with alternating the microalga production strain: a laboratory and pilot scale cultivation test. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Bernaerts TM, Verstreken H, Dejonghe C, Gheysen L, Foubert I, Grauwet T, Van Loey AM. Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103770] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
Molino A, Mehariya S, Iovine A, Casella P, Marino T, Karatza D, Chianese S, Musmarra D. Enhancing Biomass and Lutein Production From Scenedesmus almeriensis: Effect of Carbon Dioxide Concentration and Culture Medium Reuse. FRONTIERS IN PLANT SCIENCE 2020; 11:415. [PMID: 32373140 PMCID: PMC7186383 DOI: 10.3389/fpls.2020.00415] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/23/2020] [Indexed: 05/05/2023]
Abstract
The main purpose of this study is to investigate the effects of operative parameters and bioprocess strategies on the photo-autotrophic cultivation of the microalgae Scenedesmus almeriensis for lutein production. S. almeriensis was cultivated in a vertical bubble column photobioreactor (VBC-PBR) in batch mode and the bioactive compounds were extracted by accelerated solvent extraction with ethanol at 67°C and 10 MPa. The cultivation with a volume fraction of CO2 in the range 0-3.0%v/v showed that the highest biomass and lutein concentrations - 3.7 g/L and 5.71 mg/g, respectively - were measured at the highest CO2 concentration and using fresh growth medium. Recycling the cultivation medium from harvested microalgae resulted in decreased biomass and lutein content. The nutrient chemical composition analysis showed the highest consumption rates for nitrogen and phosphorus, with values higher than 80%, while sulfate and chloride were less consumed.
Collapse
Affiliation(s)
- Antonio Molino
- Department of Sustainability-CR Portici, ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
| | - Sanjeet Mehariya
- Department of Sustainability-CR Portici, ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa, Italy
| | - Angela Iovine
- Department of Sustainability-CR Portici, ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa, Italy
| | - Patrizia Casella
- Department of Sustainability-CR Portici, ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
| | - Tiziana Marino
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa, Italy
| | - Despina Karatza
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa, Italy
| | - Simeone Chianese
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa, Italy
- *Correspondence: Simeone Chianese,
| | - Dino Musmarra
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa, Italy
| |
Collapse
|
10
|
Sá M, Monte J, Brazinha C, Galinha CF, Crespo JG. Fluorescence coupled with chemometrics for simultaneous monitoring of cell concentration, cell viability and medium nitrate during production of carotenoid-rich Dunaliella salina. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Bernaerts TM, Gheysen L, Foubert I, Hendrickx ME, Van Loey AM. Evaluating microalgal cell disruption upon ultra high pressure homogenization. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101616] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Giraldo JB, Stock W, Dow L, Roef L, Willems A, Mangelinckx S, Kroth PG, Vyverman W, Michiels M. Influence of the algal microbiome on biofouling during industrial cultivation of Nannochloropsis sp. in closed photobioreactors. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Monte J, Sá M, Parreira C, Galante J, Serra AR, Galinha CF, Costa L, Pereira VJ, Brazinha C, Crespo JG. Recycling of Dunaliella salina cultivation medium by integrated membrane filtration and advanced oxidation. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Elst K, Maesen M, Jacobs G, Bastiaens L, Voorspoels S, Servaes K. Supercritical CO₂ Extraction of Nannochloropsis sp.: A Lipidomic Study on the Influence of Pretreatment on Yield and Composition. Molecules 2018; 23:molecules23081854. [PMID: 30046024 PMCID: PMC6222793 DOI: 10.3390/molecules23081854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022] Open
Abstract
Algal lipids have gained wide interest in various applications ranging from biofuels to nutraceuticals. Given their complex nature composed of different lipid classes, a deep knowledge between extraction conditions and lipid characteristics is essential. In this paper, we investigated the influence of different pretreatments on lipid extraction with supercritical CO₂ by a lipidomic approach. Pretreatment was found to double the total extraction yield, thereby reaching 23.1 wt.% comparable to the 26.9 wt.% obtained with chloroform/methanol. An increase in acylglycerides was concurrently observed, together with a nearly doubling of free fatty acids indicative of partial hydrolysis. Moreover, an alteration in the distribution of glyco- and phospholipids was noted, especially promoting digalactosyldiglycerides and phosphatidylcholine as compared to monogalactosyldiglycerides and phosphatidylglycerol. At optimized conditions, supercritical CO₂ extraction provided a lipid extract richer in neutral lipids and poorer in phospholipids as compared to chloroform/methanol, though with a very similar fatty acid distribution within each lipid class.
Collapse
Affiliation(s)
- Kathy Elst
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| | - Miranda Maesen
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| | - Griet Jacobs
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| | - Kelly Servaes
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|