1
|
Yun L, Zegarac R, Ducat DC. Impact of irradiance and inorganic carbon availability on heterologous sucrose production in Synechococcus elongatus PCC 7942. FRONTIERS IN PLANT SCIENCE 2024; 15:1378573. [PMID: 38650707 PMCID: PMC11033428 DOI: 10.3389/fpls.2024.1378573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria have been proposed as a potential alternative carbohydrate feedstock and multiple species have been successfully engineered to secrete fermentable sugars. To date, the most productive cyanobacterial strains are those designed to secrete sucrose, yet there exist considerable differences in reported productivities across different model species and laboratories. In this study, we investigate how cultivation conditions (specifically, irradiance, CO2, and cultivator type) affect the productivity of sucrose-secreting Synechococcus elongatus PCC 7942. We find that S. elongatus produces the highest sucrose yield in irradiances far greater than what is often experimentally utilized, and that high light intensities are tolerated by S. elongatus, especially under higher density cultivation where turbidity may attenuate the effective light experienced in the culture. By increasing light and inorganic carbon availability, S. elongatus cscB/sps produced a total of 3.8 g L-1 of sucrose and the highest productivity within that period being 47.8 mg L-1 h-1. This study provides quantitative description of the impact of culture conditions on cyanobacteria-derived sucrose that may assist to standardize cross-laboratory comparisons and demonstrates a significant capacity to improve productivity via optimizing cultivation conditions.
Collapse
Affiliation(s)
- Lisa Yun
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| | - Robert Zegarac
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Sakkos JK, Santos-Merino M, Kokarakis EJ, Li B, Fuentes-Cabrera M, Zuliani P, Ducat DC. Predicting partner fitness based on spatial structuring in a light-driven microbial community. PLoS Comput Biol 2023; 19:e1011045. [PMID: 37134119 PMCID: PMC10184905 DOI: 10.1371/journal.pcbi.1011045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 03/22/2023] [Indexed: 05/04/2023] Open
Abstract
Microbial communities have vital roles in systems essential to human health and agriculture, such as gut and soil microbiomes, and there is growing interest in engineering designer consortia for applications in biotechnology (e.g., personalized probiotics, bioproduction of high-value products, biosensing). The capacity to monitor and model metabolite exchange in dynamic microbial consortia can provide foundational information important to understand the community level behaviors that emerge, a requirement for building novel consortia. Where experimental approaches for monitoring metabolic exchange are technologically challenging, computational tools can enable greater access to the fate of both chemicals and microbes within a consortium. In this study, we developed an in-silico model of a synthetic microbial consortia of sucrose-secreting Synechococcus elongatus PCC 7942 and Escherichia coli W. Our model was built on the NUFEB framework for Individual-based Modeling (IbM) and optimized for biological accuracy using experimental data. We showed that the relative level of sucrose secretion regulates not only the steady-state support for heterotrophic biomass, but also the temporal dynamics of consortia growth. In order to determine the importance of spatial organization within the consortium, we fit a regression model to spatial data and used it to accurately predict colony fitness. We found that some of the critical parameters for fitness prediction were inter-colony distance, initial biomass, induction level, and distance from the center of the simulation volume. We anticipate that the synergy between experimental and computational approaches will improve our ability to design consortia with novel function.
Collapse
Affiliation(s)
- Jonathan K Sakkos
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - María Santos-Merino
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Emmanuel J Kokarakis
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Bowen Li
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Paolo Zuliani
- Dipartimento di Informatica, Università di Roma "La Sapienza", Rome, Italy
| | - Daniel C Ducat
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
3
|
Feng J, Li J, Liu D, Xin Y, Sun J, Yin WB, Li T. Generation and comprehensive analysis of Synechococcus elongatus-Aspergillus nidulans co-culture system for polyketide production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:32. [PMID: 36859469 PMCID: PMC9979520 DOI: 10.1186/s13068-023-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Artificial microbial consortia composed of heterotrophic and photoautotrophic organisms represent a unique strategy for converting light energy and carbon dioxide into high-value bioproducts. Currently, the types of desired bioproducts are still limited, and microbial fitness benefit rendered by paired partner generally needs to be intensified. Exploring novel artificial microbial consortia at a laboratory scale is an essential step towards addressing this unmet need. This study aimed to conduct and analyze an artificial consortium composed of cyanobacterium Synechococcus elongatus FL130 with the filamentous fungus Aspergillus nidulans TWY1.1 for producing fungi-derived secondary metabolite of polyketide neosartoricin B. RESULTS Polyketide-producing A. nidulans TWY1.1 substantially ameliorated the growth and the survival of sucrose-secreting cyanobacterium S. elongatus FL130 in salt-stressed environments. Besides sucrose, comparable amounts of other carbohydrates were released from axenically cultured FL130 cells, which could be efficiently consumed by TWY1.1. Relative to axenically cultured FL130, less glycogen was accumulated in FL130 cells co-cultured with TWY1.1, and the glycogen phosphorylase gene catalyzing the first step for glycogen degradation had two-fold expression. Different from axenically cultured filamentous fungi, abundant vacuoles were observed in fungal hyphae of TWY1.1 co-cultured with cyanobacterium FL130. Meanwhile, FL130 cells displayed a characteristic pattern of interacting with its heterotrophic partner, densely dispersing along certain hyphae of TWY1.1. Finally, polyketide neosartoricin B was produced from TWY1.1 in FL130-TWY1.1 co-cultures, which was tightly adjusted by nitrogen level. CONCLUSION Overall, the results thoroughly proved the concept of pairing cyanobacteria with filamentous fungi to build artificial consortia for producing fungi-derived biomolecules.
Collapse
Affiliation(s)
- Jie Feng
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jingwei Li
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Dongxia Liu
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Yuxian Xin
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jingrong Sun
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Wen-Bing Yin
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Tingting Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Santos-Merino M, Yun L, Ducat DC. Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microbiol 2023; 14:1126032. [PMID: 36865782 PMCID: PMC9971976 DOI: 10.3389/fmicb.2023.1126032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Lisa Yun
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Singh AK, Ducat DC. Generation of Stable, Light-Driven Co-cultures of Cyanobacteria with Heterotrophic Microbes. Methods Mol Biol 2022; 2379:277-291. [PMID: 35188668 DOI: 10.1007/978-1-0716-1791-5_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-cultivation of an autotrophic species with one or more heterotrophic microbes is a strategy for photobiological production of high-value compounds and is relatively underexplored in comparison to cyanobacterial or microalgal monocultures. Long-term stability of such consortia is required for useful collaboration between the partners, and this property can be increased by encapsulation of phototrophic partners within a hydrogel. Encapsulated cyanobacteria have advantages relative to planktonic cultures that may be useful to explore the potential for artificial microbial communities for targeted biomolecule synthesis, such as increased control over population sizes and reduced liquid handling requirements. In this chapter, we describe a method for encapsulation of genetically modified cyanobacterial strain (Synechococcus elongatus PCC 7942, CscB+) into a sodium alginate matrix, and the utilization of these encapsulated cells to construct stable, artificial autotroph/heterotroph co-cultures. This method has applications for the study of phototroph-based synthetic microbial consortia, and multi-species photobiological production.
Collapse
Affiliation(s)
- Amit K Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, Sporre E, Branco Dos Santos F, Hudson EP. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab Eng 2021; 68:131-141. [PMID: 34601120 DOI: 10.1016/j.ymben.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023]
Abstract
Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.
Collapse
Affiliation(s)
- Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Pineda Hernández
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Ljungqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Hallman
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Sporre
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
7
|
Sakkos JK, Hernandez-Ortiz S, Osteryoung KW, Ducat DC. Orthogonal Degron System for Controlled Protein Degradation in Cyanobacteria. ACS Synth Biol 2021; 10:1667-1681. [PMID: 34232633 DOI: 10.1021/acssynbio.1c00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synechococcus elongatus PCC 7942 is a model cyanobacterium for study of the circadian clock, photosynthesis, and bioproduction of chemicals, yet nearly 40% of its gene identities and functions remain unknown, in part due to limitations of the existing genetic toolkit. While classical techniques for the study of genes (e.g., deletion or mutagenesis) can yield valuable information about the absence of a gene and its associated protein, there are limits to these approaches, particularly in the study of essential genes. Herein, we developed a tool for inducible degradation of target proteins in S. elongatus by adapting a method using degron tags from the Mesoplasma florum transfer-mRNA (tmRNA) system. We observed that M. florum lon protease can rapidly degrade exogenous and native proteins tagged with the cognate sequence within hours of induction. We used this system to inducibly degrade the essential cell division factor, FtsZ, as well as shell protein components of the carboxysome. Our results have implications for carboxysome biogenesis and the rate of carboxysome turnover during cell growth. Lon protease control of proteins offers an alternative approach for the study of essential proteins and protein dynamics in cyanobacteria.
Collapse
Affiliation(s)
- Jonathan K. Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sergio Hernandez-Ortiz
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Katherine W. Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Current processes and future challenges of photoautotrophic production of acetyl-CoA-derived solar fuels and chemicals in cyanobacteria. Curr Opin Chem Biol 2020; 59:69-76. [DOI: 10.1016/j.cbpa.2020.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
|
9
|
Sanz Smachetti ME, Coronel CD, Salerno GL, Curatti L. Sucrose-to-ethanol microalgae-based platform using seawater. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Luan G, Zhang S, Wang M, Lu X. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnol Adv 2019; 37:771-786. [DOI: 10.1016/j.biotechadv.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/09/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022]
|
12
|
Sanz Smachetti ME, Perez Cenci M, Salerno GL, Curatti L. Ethanol and protein production from minimally processed biomass of a genetically-modified cyanobacterium over-accumulating sucrose. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|