1
|
Wang Z, Li L, Hong Y. Trilogy of comprehensive treatment of kitchen waste by bacteria-microalgae-fungi combined system: Pretreatment, water purification and resource utilization, and biomass harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175160. [PMID: 39084368 DOI: 10.1016/j.scitotenv.2024.175160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Given its profound disservice, a bacteria-microalgae-fungi combined system was designed to treat kitchen waste. Firstly, a new type of microbial agent homemade compound microorganisms (HCM) (composed of Serratia marcescens, Bacillus subtilis and other 11 strains) with relatively high bio-security were developed for pretreating kitchen waste, and HCM efficiently degraded 85.2 % cellulose, 94.3 % starch, and 59.0 % oil. HCM also accomplished brilliantly the initial nutrients purification and liquefaction conversion of kitchen waste. Under mono-culture mode (fungi and microalgae were inoculated separately in the pre - and post-stages) and co-culture mode (fungi and microalgae were inoculated simultaneously in the early stage), microalgae-fungi consortia were then applied for further water purification and resource utilization of kitchen waste liquefied liquid (KWLL) produced in the pretreatment stage. Two kinds of microalgae-fungi consortia (Chlorella sp. HQ and Chlorella sp. MHQ2 form consortia with pellet-forming fungi Aspergillus niger HW8-1, respectively) removed 79.5-83.0 % chemical oxygen demand (COD), 44.0-56.5 % total nitrogen (TN), 90.3-96.4 % total phosphorus (TP), and 64.9-71.0 % NH4+-N of KWLL. What's more, the microalgae-fungi consortia constructed in this study accumulated abundant high-value substances at the same time of efficiently purifying KWLL. Finally, in the biomass harvesting stage, pellet-forming fungi efficiently harvested 81.9-82.1 % of microalgal biomass in a low-cost manner through exopolysaccharides adhesion, surface proteins interaction and charge neutralization. Compared with conventional microalgae-bacteria symbiosis system, the constructed bacteria-microalgae-fungi new-type combined system achieves the triple purpose of efficient purification, resource utilization, and biomass recovery on raw kitchen waste through the trilogy strategy, providing momentous technical references and more treatment systems selection for future kitchen waste treatment.
Collapse
Affiliation(s)
- Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lihua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Wu S, Cheng X, Xu Q, Wang S. Feasibility study on heterotrophic utilization of galactose by Chlorella sorokiniana and promotion of galactose utilization through mixed carbon sources culture. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:100. [PMID: 39014452 PMCID: PMC11253373 DOI: 10.1186/s13068-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The development of alternative carbon sources is important for reducing the cost of heterotrophic microalgae cultivation. Among cheap feedstocks, galactose is one of the most abundant sugars and can be easily obtained from many natural biomasses. However, it is generally difficult to be utilized by microalgae. In addition, the mechanism of its low utilization efficiency in heterotrophic cultivation is still unknown. RESULTS Among seven tested carbon sources, only glucose and acetate could be efficiently utilized by C. sorokiniana in heterotrophic cultivation while there were no apparent signs of utilization of other carbohydrates, including galactose, in regular heterotrophic cultivation. However, galactose could be utilized in cultures with high inoculation sizes. This confirmed that C. sorokiniana has a complete pathway for transporting and assimilating galactose under dark conditions, but the rate of galactose utilization is quite low. In addition, the galactose utilization was greatly enhanced in mixotrophic cultures, which indicated that galactose utilization could be enhanced by additional pathways that can enhance cell growth. Based on above results, a mixed carbon source culture strategy was proposed to improve the utilization rate of galactose, and a significant synergistic effect on cell growth was achieved in cultures using a mixture of galactose and acetate. CONCLUSIONS This study indicated that the galactose metabolism pathway may not be inherently deficient in Chlorophyta. However, its utilization rate was too low to be detected in regular heterotrophic cultivation. Mixed carbon source culture strategy was confirmed effective to improve the utilization rate of galactose. This study contributes to a deeper understanding of the utilization ability of difficultly utilized substrates in the heterotrophic cultivation of microalgae, which is of great significance for reducing the cost of heterotrophic cultivation of microalgae.
Collapse
Affiliation(s)
- Shengjie Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiao Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qinyun Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shikai Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
3
|
Pan M, Wang Y, Krömer JO, Zhu X, Lin MKTH, Angelidaki I. A Coculture of Photoautotrophs and Hydrolytic Heterotrophs Enables Efficient Upcycling of Starch from Wastewater toward Biomass-Derived Products: Synergistic Interactions Impacting Metabolism of the Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15523-15532. [PMID: 37792456 DOI: 10.1021/acs.est.3c05321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Even with particular interest in sustainable development, due to the limited types of bioavailable carbon sources that could support heterotrophic/mixotrophic growth, microalgae-derived products still suffer from inconsistent yield and high costs. This study demonstrates a successful cocultivation of the photoautotroph Chlorella vulgaris with a hydrolytic-enzyme-abundant heterotroph, Saccharomycopsis fibuligera, enabling efficient starch upcycling from water/wastewater toward enhancing microalgae-dominant biomass and lipid production. The enzymatic activities of S. fibuligera contributed to the hydrolysis of starch into glucose, generating a 7-fold higher biomass through mixotrophic/heterotrophic growth of C. vulgaris. Further, scanning transmission electron microscopy (STEM) and quantitative analysis suggested a significantly induced accumulation of lipids in C. vulgaris. Results of meta-transcriptomics revealed the critical regulatory role of illumination in interaction shifting. Gene expression for glycolysis and lipid biosynthesis of C. vulgaris were highly activated during dark periods. Meanwhile, during illumination periods, genes coding for glucoamylase and the sulfur-related activities in S. fibuligera were significantly upregulated, leading to induced starch hydrolysis and potential increased competition for sulfur utilization, respectively. This study indicates that hydrolytic organisms could collaborate to make starch bioavailable for nonhydrolytic microalgae, thus broadening the substrate spectrum and making starch a novel biotechnological feedstock for microalgae-derived products, e.g., biofuels or single-cell protein.
Collapse
Affiliation(s)
- Minmin Pan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Yiru Wang
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Jens O Krömer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| |
Collapse
|
4
|
Dai YR, Wang D, Zhu YR, Yang KX, Jiao N, Sun ZL, Wang SK. Thermal-tolerant potential of ordinary Chlorella pyrenoidosa and the promotion of cell harvesting by heterotrophic cultivation at high temperature. Front Bioeng Biotechnol 2022; 10:1072942. [DOI: 10.3389/fbioe.2022.1072942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
During the heterotrophic cultivation of microalgae, a cooled process against temperature rise caused by the metabolism of exogenous organic carbon sources greatly increases cultivation cost. Furthermore, microalgae harvesting is also a cost-consuming process. Cell harvesting efficiency is closely related to the characteristics of the algal cells. It may be possible to change cell characteristics through controlling culture conditions to make harvesting easier. In this study, the mesophilic Chlorella pyrenoidosa was found to be a thermal-tolerant species in the heterotrophic mode. The cells could maintain their maximal specific growth rate at 40°C and reached 1.45 day−1, which is equivalent to that of cultures at 35°C but significantly higher than those cultured at lower temperatures. Interestingly, the cells cultured at 40°C were much easier to be harvested than those at lower temperatures. The harvesting efficiency of the cells cultured at 40°C reached 96.83% after sedimentation for 240 min, while the cells cultured at lower temperatures were reluctant to settle. Likely, the same circumstance occurred when cells were harvested by centrifugation or flocculation. The promotion of cell harvesting for cells cultured at high temperatures was mainly attributed to increased cell size and decreased cell surface charge. To the best of our knowledge, this is the first report that cells cultured at high temperatures can promote microalgae harvesting. This study explores a new approach to simplify the cultivation and harvesting of microalgae, which effectively reduces the microalgae production cost.
Collapse
|
5
|
Kumar Y, Kaur S, Kheto A, Munshi M, Sarkar A, Om Pandey H, Tarafdar A, Sindhu R, Sirohi R. Cultivation of microalgae on food waste: Recent advances and way forward. BIORESOURCE TECHNOLOGY 2022; 363:127834. [PMID: 36029984 DOI: 10.1016/j.biortech.2022.127834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are photosynthetic microbes that can synthesize compounds of therapeutic potential with wide applications in the food, bioprocessing and pharmaceutical sector. Recent research advances have therefore, focused on finding suitable economic substrates for the sustainable cultivation of microalgae. Among such substrates, food derived waste specifically from the starch, meat, dairy, brewery, oil and fruit and vegetable processing industries has gained popularity but poses numerous challenges. Pretreatment, dilution of waste water supernatants, mixing of different food waste streams, utilizing two-stage cultivation and other biorefinery approaches have been intensively explored for multifold improvement in microalgal biomass recovery from food waste. This review discusses the advances and challenges associated with cultivation of microalgae on food waste. The review suggests that there is a need to standardize different waste substrates in terms of general composition, genetically engineered microalgal strains, tackling process scalability issues, controlling wastewater toxicity and establishing a waste transportation chain.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Samandeep Kaur
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Ankan Kheto
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Mohona Munshi
- Division of Food Technology, Department of Chemical Engineering, VFSTR, Guntur, A.P, India
| | - Ayan Sarkar
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
6
|
Wang SK, Yang KX, Zhu YR, Zhu XY, Nie DF, Jiao N, Angelidaki I. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. BIORESOURCE TECHNOLOGY 2022; 361:127625. [PMID: 35850393 DOI: 10.1016/j.biortech.2022.127625] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
A novel method of one-step co-cultivation and harvesting of microalgae and fungi, for efficient starch wastewater treatment and high-value biomass production was developed. By combination of Aspergillus oryzae and Chlorella pyrenoidosa, nutrients in wastewater could be converted to useful microbial biomass, while the wastewater was purified. Moreover, the microalgae C. pyrenoidosa could gradually be encapsulated in fungal pellets which promoted the biomass harvesting. The free algal cells could be completely harvested by fungal pellets within 72 h. The synergistic effects between them greatly improved the removal efficiencies of main pollutants as the removal efficiency of COD, TN, and TP reached 92.08, 83.56, and 96.58 %, respectively. In addition, the final biomass concentration was higher than that of individual cultures. The protein and lipid concentration was also significantly improved and reached 1.92 and 0.99 g/L, respectively. This study provides a simple and efficient strategy for simultaneous wastewater treatment and high-value biomass production.
Collapse
Affiliation(s)
- Shi-Kai Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Kun-Xiao Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yu-Rong Zhu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Xin-Yu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Da-Fang Nie
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Ning Jiao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
7
|
Mechanisms of Sodium-Acetate-Induced DHA Accumulation in a DHA-Producing Microalga, Crypthecodinium sp. SUN. Mar Drugs 2022; 20:md20080508. [PMID: 36005511 PMCID: PMC9409966 DOI: 10.3390/md20080508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that is critical for the intelligence and visual development of infants. Crypthecodinium is the first microalga approved by the Food and Drug Administration for DHA production, but its relatively high intracellular starch content restricts fatty acid accumulation. In this study, different carbon sources, including glucose (G), sodium acetate (S) and mixed carbon (M), were used to investigate the regulatory mechanisms of intracellular organic carbon distribution in Crypthecodinium sp. SUN. Results show that glucose favored cell growth and starch accumulation. Sodium acetate limited glucose utilization and starch accumulation but caused a significant increase in total fatty acid (TFA) accumulation and the DHA percentage. Thus, the DHA content in the S group was highest among three groups and reached a maximum (10.65% of DW) at 96 h that was 2.92-fold and 2.24-fold of that in the G and M groups, respectively. Comparative transcriptome analysis showed that rather than the expression of key genes in fatty acids biosynthesis, increased intracellular acetyl-CoA content appeared to be the key regulatory factor for TFA accumulation. Additionally, metabolome analysis showed that the accumulated DHA-rich metabolites of lipid biosynthesis might be the reason for the higher TFA content and DHA percentage of the S group. The present study provides valuable insights to guide further research in DHA production.
Collapse
|
8
|
Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149765. [PMID: 34454141 DOI: 10.1016/j.scitotenv.2021.149765] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/27/2023]
Abstract
There is a growing global recognition that microalgae-based biofuel are environment-friendly and economically feasible options because they incur several advantages over traditional fossil fuels. Also, the microalgae can be manipulated for extraction of value-added compounds such as lipids (triacylglycerols), carbohydrates, polyunsaturated fatty acids, proteins, pigments, antioxidants, various antimicrobial compounds, etc. Recently, there is an increasing focus on the co-cultivation practices of microalgae with other microorganisms to enhance biomass and lipid productivity. In a co-cultivation strategy, microalgae grow symbiotically with other heterotrophic microbes such as bacteria, yeast, fungi, and other algae/microalgae. They exchange nutrients and metabolites; this helps to increase the productivity, therefore facilitating the commercialization of microalgal-based fuel. Co-cultivation also facilitates biomass harvesting and waste valorization, thereby help to build an algal biorefinery platform for bioenergy production along with multivariate high value bioproducts and simultaneous waste bioremediation. This article comprehensively reviews various microalgae cultivation practices utilizing co-culture approaches with other algae, fungi, bacteria, and yeast. The review mainly focuses on the impact of several binary culture strategies on biomass and lipid yield. The advantages and challenges associated with the procedure along with their respective cultivation modes have also been presented and discussed in detail.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
9
|
Cai Y, Liu Y, Liu T, Gao K, Zhang Q, Cao L, Wang Y, Wu X, Zheng H, Peng H, Ruan R. Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production. BIORESOURCE TECHNOLOGY 2021; 323:124607. [PMID: 33385629 DOI: 10.1016/j.biortech.2020.124607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The high cost of carbon source limits the heterotrophic culture of Chlorella. In this study, broken rice was hydrolyzed into glucose. Then, the broken rice hydrolysate (BRH) was utilized for heterotrophic cultivation of C. vulgaris instead of glucose. Results showed that algal cells released H+ when they consumed NH4+, leading to a sharp decrease in pH. Growth inhibition by acid could be avoided by using a pH buffer. Adding alkaline reagents intermittently during culture could not only reduce the amount of pH stabilizer but also obtain increased biomass production. When using Tris as pH stabilizer, the biomass productivity of C. vulgaris in BRH was the largest (1.01 g/L/d), followed by NaOH (1.00 g/L/d), and Na2CO3 (0.95 g/L/d). Using BRH instead of glucose for heterotrophic cultivation of C. vulgaris could save 89.58% of the cost of culture medium. This study developed a novel strategy for cultivating C. vulgaris heterotrophically using BRH.
Collapse
Affiliation(s)
- Yihui Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Kaili Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiaodan Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongli Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Roger Ruan
- Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| |
Collapse
|
10
|
Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16952-16973. [PMID: 31030399 DOI: 10.1007/s11356-019-05138-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Oleaginous microalgae and yeast are the two major propitious factories which are sustainable sources for biodiesel production, as they can accumulate high quantities of lipids inside their bodies. To date, various microalgal and yeast species have been exploited singly for biodiesel production. However, despite the ongoing efforts, their low lipid productivity and the high cost of cultivation are still the major bottlenecks hindering their large-scale deployment. Co-culturing of microalgae and yeast has the potential to increase the overall lipid productivity by minimizing its production cost as both these organisms can utilize each other's by-products. Microalgae act as an O2 generator for yeast while consuming the CO2 and organic acids released by the yeast cells. Further, yeast can break complex sugars in the medium, which can then be utilized by microalgae thereby opening new options for copious and low-cost feedstocks such as agricultural residues. The current review provides a historical and technical overview of the existing studies on co-culturing of yeast and microalgae and elucidates the crucial factors that affect the symbiotic relationship between these two organisms. Furthermore, the review also highlighted the advantages and the future perspectives for paving a path towards a sustainable biodiesel product.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Alok Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Juhi Mehtani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Parul A Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|