1
|
Harbaoui A, Khelifi N, Aissaoui N, Muzard M, Martinez A, Smaali I. A novel bioactive and functional exopolysaccharide from the cyanobacterial strain Arthrospira maxima cultivated under salinity stress. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03120-2. [PMID: 39688685 DOI: 10.1007/s00449-024-03120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Cyanobacterial exopolysaccharides (EPS) remain released by cyanobacteria in the surrounding environment with the main purpose of protection against harmful environmental conditions. Recently, they have received significant attention due to their unique structural characteristics, functional properties, and potential applications across various fields. The current study describes the evaluation of EPS production under salinity stress from Arthrospira maxima. The application of high salinity up to 40 g/L enhanced EPS production, which was collected and purified by alcohol precipitation followed by membrane dialysis and lyophilization. A yield of 60 mg/L was obtained. The Size exclusion chromatography gave for the purified EPS an apparent molecular weight of 2.1 × 105 Da. Monosaccharide composition showed that EPS is a heteropolymer, with mannose, xylose, and glucuronic acid identified as the predominant monosaccharides and derivatives. Nuclear magnetic resonance spectroscopy (13C and 1H) confirmed that EPS is a heteropolysaccharide, entirely in α- anomeric configuration, with glucuronic acid as a main monomer that is probably linked to mannose and xylose via α-glycosidic linkages. Bioactivity assessment of EPS revealed that it exhibits antibacterial activity against several strains, notably, Bacillus subtilis (MIC: 0.6 ± 0.05 mg/mL), Bacillus cereus (MIC: 1 ± 0.01 mg/mL), Escherichia coli (MIC: 0.8 ± 0.01 mg/mL) and Klebsiella pneumonia (MIC: 0.8 ± 0.01 mg/mL). Antioxidant activity was measured using the DPPH radical scavenging assay, yielding an IC₅₀ of 6.83 mg/mL. Besides, EPS was also found to exhibit an interesting emulsifying property with several oil types, indicating its potential as a versatile biopolymer for applications in various industrial sectors.
Collapse
Affiliation(s)
- Amel Harbaoui
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia
| | - Nadia Khelifi
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia
- University of Carthage, Higher Institute of Marine Sciences of Bizerte, BP 15, Errimel, 7080, Bizerte, Tunisia
| | - Neyssene Aissaoui
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia
| | - Murielle Muzard
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France
| | - Agathe Martinez
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, France
| | - Issam Smaali
- Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia.
| |
Collapse
|
2
|
Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol 2024; 290:138855. [PMID: 39701227 DOI: 10.1016/j.ijbiomac.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Plant-derived bioactive polysaccharides (PDBPs), versatile polymers originating from various botanical sources, exhibit a spectrum of biological functionalities crucial for human health. This review delves into the multifaceted roles of these bioactive compounds, elucidating their immune-boosting properties, antioxidant prowess, anti-inflammatory capabilities, and contributions to gut health. Amidst their pivotal roles, the efficiency of PDBPs delivery and bioavailability in the human system stands as a central determinant of their efficacy and utilization. This review paper extensively and systematically examines the diverse biological activities, such as immunomodulatory effects, delivery mechanisms like microencapsulation, and promising applications of PDBPs within the realms of both food (functional foods and nutraceuticals) and pharmaceutical (antimicrobial agents and anti-inflammatory drugs) sectors. Additionally, it offers a comprehensive overview of the classification, sources, and structural diversity of these polysaccharides, highlighting various identification techniques and rheological considerations. Moreover, the review addresses critical safety and regulatory concerns alongside global legislation about plant bioactive polysaccharides, envisaging a broader landscape for their utilization. Through this synthesis, we aim to underscore the holistic significance of PDBPs and their potential to revolutionize nutritional and therapeutic paradigms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Food Sciences, Khazar Institute of Higher Education, Mahmoud Abad, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
3
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu X, Yin Q, Chen X, Sun P, Liu Y. Ultrasound-assisted extraction of phenolics from Sargassum carpophyllum - A kinetics study. JOURNAL OF PHYCOLOGY 2024; 60:956-967. [PMID: 38924088 DOI: 10.1111/jpy.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
The species of the brown macroalgal genus Sargassum are distributed globally and contain many bioactive compounds. In this study, ultrasound-assisted extraction (UAE) was applied to obtain phenolic compounds with strong antioxidant activity from Sargassum carpophyllum collected along the coastline of Weizhou Island in the South China Sea. The influence of different variables such as the solid-liquid ratio (1:5-1:30 g · mL-1), ultrasonic power (160-280 W), duty circle ratio (DCR, 1/3-1/1), and ethanol concentration (30% to ~90%) were studied using a single factor design. The extraction kinetics were investigated using the Peleg model and second-order kinetics model, and the second-order model described the extraction procedure better than the Peleg model. Total phenol content (TPC) values of 3.316, 2.964, 2.741, and 3.665 mg phloroglucinol (PHG) · g-1 algae were achieved at a higher solid-liquid ratio (1:30 g · mL-1), higher ultrasonic power (280 W), a higher DCR (1/1), and a moderate ethanol concentration (50%), respectively. However, a slightly different result was observed in the extract obtained, with total phenol contents (TPCextract) of 52.99, 65.00, 46.22, and 55.10 mg PHG · g-1 extract and DPPH radical scavenging activity (IC50) of 0.096, 0.066, 0.131, and 0.136 mg extract · mL-1 observed at 50% ethanol, 1:5 g m· mL-1, 2/3 DCR, and 200 W respectively. All variables studied influenced the extraction kinetics by altering the extraction rate and the TPC at equilibrium. As for the bioactivities in the extract, a larger solid-liquid ratio and greater ultrasonic power may not contribute because of their ability to extract non-phenolic components simultaneously, leading to reduced overall bioactivities. The results of the present study provide essential information for future UAE process design and optimization for extracting phenolics from S. carpophyllum through mathematical modeling and could be regarded as important reference for obtaining value-added products from other macroalgae species.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Qunjian Yin
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Ying Liu
- Shenzhen Academy of Environmental Science, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Ben Soltana O, Barkallah M, Hentati F, Elhadef K, Ben Hlima H, Smaoui S, Michaud P, Abdelkafi S, Fendri I. Improving the shelf life of minced beef by Cystoseira compressa polysaccharide during storage. Int J Biol Macromol 2024; 273:132863. [PMID: 38838888 DOI: 10.1016/j.ijbiomac.2024.132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
A polysaccharide extracted from the brown alga Cystoseira compressa (CCPS) was evaluated as a food additive to extend the shelf-life of raw beef meat. The antioxidant potential of CCPS was demonstrated by its inhibition of β-carotene bleaching (64.28 %), superoxide radicals (70.12 %), and hydroxyl radicals (93 %) at a concentration of 10 mg/ml. The polysaccharide also showed antibacterial activity with MIC values between 6.25 mg/ml and 50 mg/ml against five foodborne pathogenic bacteria. Furthermore, CCPS exhibited excellent functional, foaming, and emulsifying properties. Furthermore, microbiological and chemical effects of CCPS at concentrations equivalent to 1 MIC (CCPS-1), 2 MIC (CCPS-2), and 4 MIC (CCPS-3) were conducted. Chemical analyses showed that treated beef had significantly reduced TBARS levels below 2 mg MDA/kg at day 14. The treatment also decreased carbonyl groups, improved heme iron transformation, inhibited microbial growth (p < 0.05), and kept MetMb levels below 40 % by day 14. Moreover, two multivariate approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), were effectively used to analyze the results characterizing the main attributes of the stored meat samples. In conclusion, these findings demonstrated that CCPS could be employed as a functional and bioactive component in the meat industry.
Collapse
Affiliation(s)
- Oumaima Ben Soltana
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures (LR01ES21), Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Faiez Hentati
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia.
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures (LR01ES21), Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Xie C, Leeming MG, Lee ZJ, Yao S, van de Meene A, Suleria HAR. Physiochemical changes, metabolite discrepancies of brown seaweed-derived sulphated polysaccharides in the upper gastrointestinal tract and their effects on bioactive expression. Int J Biol Macromol 2024; 272:132845. [PMID: 38830495 DOI: 10.1016/j.ijbiomac.2024.132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.
Collapse
Affiliation(s)
- Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Allison van de Meene
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Batsukh S, Oh S, Lee JM, Joo JHJ, Son KH, Byun K. Extracellular Vesicles from Ecklonia cava and Phlorotannin Promote Rejuvenation in Aged Skin. Mar Drugs 2024; 22:223. [PMID: 38786614 PMCID: PMC11123375 DOI: 10.3390/md22050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) elicit diverse biological effects, including promoting skin health. EVs isolated from Ecklonia cava (EV-EC) carry heat shock protein 70 (HSP70), which inhibits key regulators such as TNF-α, MAPKs, and NF-κB, consequently downregulating matrix metalloproteinases (MMPs). Aging exacerbates oxidative stress, upregulating MAPK and NF-κB signaling and worsening extracellular matrix degradation in the skin. E. cava-derived phlorotannin (PT) mitigates MAPK and NF-κB signaling. We evaluated the impact of EV-EC and PT on skin rejuvenation using an in vitro keratinocyte senescence model and an in vivo aged-mouse model. Western blotting confirmed the presence of HSP70 in EV-EC. Treatment with EV-EC and PT in senescent keratinocytes increased HSP70 expression and decreased the expression of TNF-α, MAPK, NF-κB, activator protein-1 (AP-1), and MMPs. Oxidative stress was also reduced. Sequential treatment with PT and EV-EC (PT/EV-EC) yielded more significant results compared to individual treatments. The administration of PT/EV-EC to the back skin of aged mice mirrored the in vitro findings, resulting in increased collagen fiber accumulation and improved elasticity in the aged skin. Therefore, PT/EV-EC holds promise in promoting skin rejuvenation by increasing HSP70 expression, decreasing the expression of MMPs, and reducing oxidative stress in aged skin.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Min Lee
- Doctors Dermatologic Clinic, Gangdong Godeok, Seoul 05269, Republic of Korea
| | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
8
|
Zhang S, Zhang Q, Wang T, Li C, Tang L, Xiao L. Response Surface Optimization of Polysaccharides from Jaboticaba (Myrciaria cauliflora [Mart.] O.Berg) Fruits: Ultrasound-Assisted Extraction, Structure Properties, and Antioxidant/Hypoglycemic Activities. Chem Biodivers 2024; 21:e202302070. [PMID: 38302826 DOI: 10.1002/cbdv.202302070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Ultrasound-assisted extraction (UAE) method proves to be more effective compared to traditional extraction methods. In the present study, response surface methodology (RSM) was used to determine the optimal process parameters for extracting polysaccharides (U-MCP) from jaboticaba fruit using UAE. The optimum extraction conditions were ultrasonic time 70 min, extraction temperature 60 °C, and power 350 W. Under these conditions, the sugar content of U-MCP was 52.8 %. The molecular weights of the ultrasound-assisted extracted U-MCP ranged from 9.52×102 to 3.27×103 Da, and consisted of five monosaccharides including mannose, galacturonic acid, glucose, galactose, and arabinose. Moreover, in vitro antioxidant and hypoglycaemic assay revealed that U-MCP has prominent anti-oxidant activities (1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals, hydroxyl radicals and 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt) (ABTS) radicals scavenging activities) and hypoglycemic activities (α-amylase and α-glucosidase inhibition activities).
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tanggan Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Liqun Tang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Leyi Xiao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
9
|
Li R, Zhou QL, Yang RY, Chen ST, Ding R, Liu XF, Luo LX, Xia QY, Zhong SY, Qi Y, Williams RJ. Determining the potent immunostimulation potential arising from the heteropolysaccharide structure of a novel fucoidan, derived from Sargassum Zhangii. Food Chem X 2023; 18:100712. [PMID: 37397206 PMCID: PMC10314166 DOI: 10.1016/j.fochx.2023.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
A preliminary study was conducted of the chemical, structural properties and immunomodulatory activities of fucoidan isolated from Sargassum Zhangii (SZ). Sargassum Zhangii fucoidan (SZF) was determined to have a sulfate content of 19.74 ± 0.01% (w/w) and an average molecular weight of 111.28 kDa. SZF possessed a backbone structure of (1,4)-α-d-linked-galactose, (3,4)-α-l-fucose, (1,3)-α-d-linked-xylose, β-d-linked-mannose and a terminal (1,4)-α-d-linked-glucose. The main monosaccharide composition was determined as (w/w) 36.10% galactose, 20.13% fucose, 8.86% xylose, 7.36% glucose, 5.62% mannose, and 18.07% uronic acids, respectively. An immunostimulatory assay showed that SZF, compared to commercial fucoidans (Undaria pitnnaifida and Fucus vesiculosus sources), significantly elevated nitric oxide production via up-regulation of cyclooxygenase-2 and inducible nitric oxide synthase at both gene and protein levels. These results suggest that SZ has the potential to be a source of fucoidan with enhanced properties that may act as a useful ingredient for functional foods, nutritional supplements, and immune enhancers.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, Guangdong, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qing-Ling Zhou
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, Guangdong, China
| | - Rui-Yu Yang
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, Guangdong, China
| | - Shu-Tong Chen
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, Guangdong, China
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Rui Ding
- The Marine Biomedical Research Institute, Guangdong Medical University, the Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Xiao-Fei Liu
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, Guangdong, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, the Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Qiu-Yu Xia
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, Guangdong, China
| | - Sai-Yi Zhong
- College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, Guangdong, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Qi
- The Marine Biomedical Research Institute, Guangdong Medical University, the Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Richard J. Williams
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| |
Collapse
|
10
|
Preparation and Characterization of Intracellular and Exopolysaccharides during Cycle Cultivation of Spirulina platensis. Foods 2023; 12:foods12051067. [PMID: 36900580 PMCID: PMC10000700 DOI: 10.3390/foods12051067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
The dried cell weight (DCW) of Spirulina platensis gradually decreased from 1.52 g/L to 1.18 g/L after five cultivation cycles. Intracellular polysaccharide (IPS) and exopolysaccharide (EPS) content both increased with increased cycle number and duration. IPS content was higher than EPS content. Maximum IPS yield (60.61 mg/g) using thermal high-pressure homogenization was achieved after three homogenization cycles at 60 MPa and an S/I ratio of 1:30. IPS showed a more fibrous, porous, and looser structure, and had a higher glucose content and Mw (272.85 kDa) compared with EPS, which may be indicative of IPS's higher viscosity and water holding capacity. Although both carbohydrates were acidic, EPS had stronger acidity and thermal stability than IPS; this was accompanied by differences in monosaccharide. IPS exhibited the highest DPPH (EC50 = 1.77 mg/mL) and ABTS (EC50 = 0.12 mg/mL) radical scavenging capacity, in line with IPS's higher total phenol content, while simultaneously showing the lowest HO• scavenging and ferrous ion chelating capacities; thus characterizing IPS as a superior antioxidant and EPS as a stronger metal ion chelator.
Collapse
|
11
|
Zhou R, Qian Y, Lei Z, Tang Y, Li Y. Production and characterization of exopolysaccharides from salinity-induced Auxenochlorella protothecoides and the analysis of anti-inflammatory activity. Int J Biol Macromol 2023; 240:124217. [PMID: 37001784 DOI: 10.1016/j.ijbiomac.2023.124217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
The set scenario of this work was to investigate the production, physicochemical characteristics, and anti-inflammatory activities of exopolysaccharides from salinity-induced Auxenochlorella protothecoides. The results demonstrated that 10 ‰ salinity manipulation endowed preferable exopolysaccharide production by A. protothecoides. Under this salinity stress, ACPEPS1A and ACPEPS2A were purified from exopolysaccharide production by anion chromatography and molecular exclusion chromatography. ACPEPS1A exhibited a molecular weight (Mw) of 132 kDa and mainly consisted of galactose. ACPEPS2A was a heteropolysaccharide with an Mw of 170 kDa and the main monosaccharides of galactose and rhamnose with separate molar percents of 42.41 % and 35.29 %, respectively. FTIR, 1H and 13C NMR supported that monosaccharide components of ACPEPS1A and ACPEPS2A possessed both α- and β-configuration pyranose rings. Further evidence indicated that ACPEPS1A and ACPEPS2A could effectively inhibit the inflammatory response in lipopolysaccharide (LPS) induced RAW264.7 cells by quenching inflammatory factor levels such as ROS, iNOS, TNF-α, and IL-6. The potential anti-inflammatory possibilities were that the monosaccharides of ACPEPS1A and ACPEPS2A possessed higher affinity with receptors on the macrophage surface than LPS and hampered LPS-induced inflammation. The findings of this work would favor innovative applications of exopolysaccharides from microalgae in complementary medicines or functional foods.
Collapse
|
12
|
Huang YY, Wu JM, Wu WT, Lin JW, Liang YT, Hong ZZ, Jia XZ, Liu DM. Structural, antioxidant, and immunomodulatory activities of an acidic exopolysaccharide from Lactiplantibacillus plantarum DMDL 9010. Front Nutr 2022; 9:1073071. [PMID: 36570157 PMCID: PMC9779943 DOI: 10.3389/fnut.2022.1073071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the structural, antioxidant, and immunomodulatory activities of acidic exopolysaccharide (EPS-LP2) isolated from Lactiplantibacillus plantarum DMDL 9010. EPS-LP2 is composed of fucose (Fuc), arabinose (Ara), galactose (Gal), glucose (Glc), mannose (Man), and D-fructose (Fru) with a molar ratio of 0.13: 0.69: 8.32: 27.57: 62.07: 0.58: 0.46, respectively. Structural analysis of EPS-LP2 exhibited a smooth irregular lamellar surface, rod-like structure with swollen ends and slippery surfaces, and good thermal stability. Based on the methylation and NMR analysis, sugar residues including t-Manp, t-Glcp, 2-Manp, 6-Galp, 6-Glcp, and 4-Glcp were found to exist in EPS-LP2. In the 50∼400 μg/ml range, EPS-LP2 showed negligible neurotoxicity to RAW264.7 cells. Moreover, EPS-LP2 could protect RAW264.7 cells from oxidative injury by lowering the generation of reactive oxygen species (ROS), malondialdehyde (MDA), and the secretion of lactate dehydrogenase (LDH). In contrast, an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and the concentrations of glutathione (GSH) were observed. Immunoreactivity assays showed that EPS-LP2 could suppress the expression of NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) and inhibit the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor-κB-gene binding (NF-κB) cell pathway. Conclusively, EPS-LP2 could be a potential natural antioxidant and immunomodulatory agent in functional foods and medicines.
Collapse
Affiliation(s)
- Yan-yan Huang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Jia-min Wu
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Wei-tong Wu
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Jia-wei Lin
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Yan-tong Liang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Zhen-zhen Hong
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Xiang-ze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong-mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China,*Correspondence: Dong-mei Liu,
| |
Collapse
|
13
|
Song Q, Kong L. Chemical structure and protective effect against alcoholic kidney and heart damages of a novel polysaccharide from Piperis Dahongpao. Carbohydr Res 2022; 522:108698. [DOI: 10.1016/j.carres.2022.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022]
|
14
|
Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232314807. [PMID: 36499132 PMCID: PMC9737215 DOI: 10.3390/ijms232314807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Wild mushrooms have gained great importance for being a source of biologically active compounds. In this work, we evaluate the anticancer and antioxidant activity of a water-soluble crude polysaccharide extract isolated from the fruiting bodies of the Ganoderma aff. australe (GACP). This mushroom was collected in San Mateo (Boyacá, Colombia) and identified based on macroscopic and microscopic characterization. GACP was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, high-performance liquid chromatography-diode array detector, and nuclear magnetic resonance. The antiradical and antioxidant activity were evaluated by different methods and its anticancer activity was verified in the osteosarcoma MG-63 human cell line. Chemical and spectroscopic analysis indicated that GACP consisted of β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and α-D-Glcp-(1→ residues. The results of the biological activity showed that GACP exhibited high antioxidant activity in the different methods and models studied. Moreover, the results showed that GACP impaired cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and cell proliferation (clonogenic assay) in a dose-response manner on MG-63 cells. The findings of this work promote the use of mushroom-derived compounds as anticancer and antioxidant agents for potential use in the pharmaceutical and food industries.
Collapse
|
15
|
Structural characteristics of native and chemically sulfated polysaccharides from seaweed and their antimelanoma effects. Carbohydr Polym 2022; 289:119436. [DOI: 10.1016/j.carbpol.2022.119436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
|
16
|
Chen X, Shen M, Yang J, Yu Q, Chen Y, Wang X, Lu H, Tao X, Li H, Xie J. RNA-seq based elucidation of mechanism underlying Mesona chinensis Benth polysaccharide protected H2O2-induced oxidative damage in L02 cells. Food Res Int 2022; 157:111383. [DOI: 10.1016/j.foodres.2022.111383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 02/08/2023]
|
17
|
Cui M, Tian J, Sun J, Li X, Xu Q, Ma J, Liu K, Liu K. Isolation, Structural Analysis and Anti-Inflammatory Activity of a Polysaccharide from Ilex cornuta Fruits. Chem Biodivers 2022; 19:e202200084. [PMID: 35484695 DOI: 10.1002/cbdv.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022]
Abstract
In the present study, a polysaccharide from Ilex cornuta fruits (LCFP-3) was obtained by hot water extraction, Diethyaminoethyl cellulose-52 (DEAE-52) chromatography column and Sephadex G-100 gel column purification. Its structural characteristics were further explored using high performance anion exchange chromatography (HPAEC), gas chromatography and mass spectrometry (GC/MS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Monosaccharide composition analysis revealed LCFP-3 contained mainly Galactose (31.92 %), Arabinose (25.87 %) and Galacturonic acid (23.35 %) while small percentage of Rhamnose, Glucose, Mannose and Xylose. Chemical composition analysis showed that the total sugar content of LCFP-3 was 90.31 % and the protein content was 0.246 %. Gel permeation chromatography (GPC) analysis showed that its average molecular weight was 41.199 kDa. Structural analysis showed that LCFP-3 may be composed of residues, T-α-Arap, T-α-Rhap, 1,3-α-Arap, 1,4-α-Arap, T-β-Galp, 1,4-α-GalpA(OMe), 1,4-β-Glcp, 1,3-β-Galp, 1,3,6-β-Manp, 1,6-β-Galp, 1,3,4-β-GalpA, 1,4,6-β-Manp, 1,3,6-β-Glcp, 1,2,3,4-α-Xylp. The anti-inflammatory activity of LCFP-3 was evaluated using lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The results showed that 1-200 μg/mL LCFP-3 could dose-dependently protect against LPS-induced toxicity and 1 μg/mL LCFP-3 could significantly inhibit LPS-induced NO production. Therefore, LCFP-3 exerted an anti-inflammatory activity and has great potential as a functional ingredient.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Tian
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Sun
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyuan Li
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiaohong Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Ma
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Kewu Liu
- Mudanjiang Branch of Heilongjiang Academy of Forestry, Heilongjiang, 157010, China
| |
Collapse
|
18
|
Matsui T, Ito C, Itoigawa M, Shibata T. Three phlorotannins from Sargassum carpophyllum are effective against the secretion of allergic mediators from antigen-stimulated rat basophilic leukemia cells. Food Chem 2022; 377:131992. [PMID: 34998157 DOI: 10.1016/j.foodchem.2021.131992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Sargassum carpophyllum (Sargassaceae) is a brown seaweed that contains phlorotannins, which are phloroglucinol polymers with reported anti-inflammatory activities. The phlorotannins 2-[2-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy]-1,3,5-benzenetriol (1), 2,2'-[[2-(3,5-dihydroxyphenoxy)-5-hydroxy-1,3-phenylene]bis(oxy)]bis(1,3,5-benzenetriol) (2), and 2-[2-[4-[2-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy]-3,5-dihydroxyphenoxy]-3,5-dihydroxyphenoxy]-1,3,5-benzenetriol (3) were isolated from S. carpophyllum. Here, we evaluated the anti-allergic activities of these compounds and comprehensively explored their effects on intracellular protein levels. Immunoglobulin E-sensitized rat basophilic leukemia cells pretreated with any of these three compounds exhibited reduced β-hexosaminidase, prostaglandin D2, and tumor necrosis factor-α secretion compared with dinitrophenyl-human serum albumin (DNP-HSA)-stimulated cells. Reduction of β-hexosaminidase release was dose-dependent but the half-maximal inhibitory concentrations of the compounds were similar (36-51 μM). Proteomics analysis revealed that the three compounds up-regulated 25 proteins and down-regulated 33 proteins compared with DNP-HSA stimulation alone, and slightly suppressed proteasome 5 expression linked to the regulation of IκB. These results demonstrate that these phlorotannins are potentially useful for preventing immediate hypersensitivity. S. carpophyllum may be a functional food.
Collapse
Affiliation(s)
- Takuya Matsui
- Department of Physiology, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Chihiro Ito
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Masataka Itoigawa
- School of Sport and Health Science, Tokai Gakuen University, 21-233 Nishinohora, Ukigai, Miyoshi, Aichi 470-0207, Japan
| | - Toshiyuki Shibata
- Graduate School of Bioresources, Laboratory of Marine Food Chemistry, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan; Seaweed Biorefinery Research Center, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
19
|
Dietary Sargassum angustifolium (Macro-Algae, Sargassaceae) extract improved antioxidant defense system in diazionon-exposed common carp, Cyprinus carpio. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effects of different dietary levels of algae (Sargassum angustifolium) extract were investigated on the antioxidant system of common carp, Cyprinus carpio. Fish (30.2 ± 2.1 g) were fed 0 (control), 5, 10 and 15 g/kg basal diet of Sargassum angustifolium extract (SAE) for 60 days and then exposed to an environmentally relevant concentration of diazinon (2 mg/l) for 24 h. The biochemical assays was conducted in two times including at the end of feeding period and after 24 h exposure to diazinon. According to the results, malondialdehyde (MDA) levels in the liver remained unchanged (P>0.01) during feeding period, while significantly increased in response to diazinon in control and fish fed 5 and 10 g/kg diet SAE (P<0.01). The hepatic metabolic enzymes (AST: Aspartate aminotransferase, ALT: alanine aminotransferase, LDH: lactate dehydrogenase, CK: creatine kinase) showed no significant changes in all groups during feeding period, while these enzymes increased in Non-SAE supplemented fish and those fed 5 and 10 g/kg SAE after exposure to diazinon (P<0.01). Although little elevations were observed in the activity of hepatic antioxidant enzymes (CAT: catalase, SOD: superoxide dismutase, GPx: Glutathione peroxidase) in fish fed SAE, these elevations were not significant (P>0.01). After exposure to diazinon, antioxidant enzymes significantly decreased in control and fish fed 5 g/kg diet SAE, while the fish of 10 and 15 g/kg diet SAE treatments showed significant elevations (P<0.01). The antioxidant-related genes (sod, cat, gpx) significantly expressed more in response to dietary SAE compared to control (P<0.01). After exposure to diazinon, all groups showed significant elevations in antioxidant-related genes (P<0.01). In conclusion, the results of the present study revealed the antioxidant enhancing effects of SAE at dietary levels of 10 and 15 g/kg diet, which this effect may be attributed to some antioxidant components in the chemical composition of the macro-algae or to the direct effect of SAE on antioxidant defence system of the fish.
Collapse
|
20
|
Mechanisms of RAW264.7 macrophages immunomodulation mediated by polysaccharide from mung bean skin based on RNA-seq analysis. Food Res Int 2022; 154:111017. [DOI: 10.1016/j.foodres.2022.111017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
|
21
|
Yang M, Zhou D, Xiao H, Fu X, Kong Q, Zhu C, Han Z, Mou H. Marine-derived uronic acid-containing polysaccharides: Structures, sources, production, and nutritional functions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Wang X, Cheng L, Liu Y, Zhang R, Wu Z, Weng P, Zhang P, Zhang X. Polysaccharide Regulation of Intestinal Flora: A Viable Approach to Maintaining Normal Cognitive Performance and Treating Depression. Front Microbiol 2022; 13:807076. [PMID: 35369451 PMCID: PMC8966502 DOI: 10.3389/fmicb.2022.807076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The intestinal tract of a healthy body is home to a large variety and number of microorganisms that will affect every aspect of the host’s life. In recent years, polysaccharides have been found to be an important factor affecting intestinal flora. Polysaccharides are widely found in nature and play a key role in the life activities of living organisms. In the intestinal tract of living organisms, polysaccharides have many important functions, such as preventing the imbalance of intestinal flora and maintaining the integrity of the intestinal barrier. Moreover, recent studies suggest that gut microbes can influence brain health through the brain-gut axis. Therefore, maintaining brain health through polysaccharide modulation of gut flora deserves further study. In this review, we outline the mechanisms by which polysaccharides maintain normal intestinal flora structure, as well as improving cognitive function in the brain via the brain-gut axis by virtue of the intestinal flora. We also highlight the important role that gut microbes play in the pathogenesis of depression and the potential for treating depression through the use of polysaccharides to modulate the intestinal flora.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Lu Cheng,
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
- Peng Zhang,
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Xin Zhang,
| |
Collapse
|
23
|
Xiang XW, Wang R, Chen H, Chen YF, Shen GX, Liu SL, Sun PL, Chen L. Structural characterization of a novel marine polysaccharide from mussel and its antioxidant activity in RAW264.7 cells induced by H2O2. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
|
25
|
Feng Y, Wassie T, Gan R, Wu X. Structural characteristics and immunomodulatory effects of sulfated polysaccharides derived from marine algae. Crit Rev Food Sci Nutr 2022; 63:7180-7196. [PMID: 35193454 DOI: 10.1080/10408398.2022.2043823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Marine algae are becoming an important source of valuable candidates of functional food that remain unexplored. Compositional analysis showed that marine algae contain essential nutrients, such as carbohydrates, proteins, fats, and minerals, of which polysaccharides are the main bioactive component. Depending on the source, marine algae polysaccharides are sulfated, which have diverse structures and compositions that influence their biological activities. A growing body of evidence has demonstrated that sulfated polysaccharides derived from marine algae (SPs) exhibit various bioactivities, especially immunomodulation. This review aims at summarizing the structural characteristics of SPs, their immunomodulatory effects, and the structural-immunomodulatory activity relationships between them from articles in recent decade, in order to provide a theoretical basis for the further applications of SPs as promising food or feed additives and possible health products to modulate the immune response.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Teketay Wassie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, China
| |
Collapse
|
26
|
Xie L, Huang Z, Qin L, Yu Q, Chen Y, Zhu H, Xie J. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. Int J Biol Macromol 2022; 204:103-115. [PMID: 35144010 DOI: 10.1016/j.ijbiomac.2022.01.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
The Cyclocarya paliurus polysaccharide (CP) was chemically modified to produce sulfated derivatives (S-CP) and carboxymethylated derivatives (CM-CP). Subsequently, the antioxidant activity, cytoprotective effect and antitumor activity of these derivatives were investigated to establish the relationship between their structure and functional activity. The results found that chemical modifications resulted in remarkable variations in the chemical compositions and apparent structures of CP. S-CP with the highest amount of glucose had the strongest antioxidant capacity to scavenge DPPH• and HO•, but CM-CP was lower than CP in terms of HO• scavenging. More importantly, S-CP and CM-CP more effectively protected RAW264.7 from H2O2-induced damage compared to CP by reducing the secretion of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), enhancing phagocytosis and superoxide dismutase (SOD) levels, and suppressing abnormal apoptosis. Further experiments showed that the anti-apoptotic effect of S-CP and CM-CP was in intimate association with down-regulation of Caspase-9/3 activities and alleviation of cell cycle arrest in the S phase. In addition, S-CP and CM-CP decreased the cell viability of tumor cells. These findings suggest that the type of functional group plays important roles in the biological function of the derivatives and provide a theoretical basis for the development of novel natural anti-oxidants or low-toxicity anti-tumor drugs.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Haibing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
27
|
Chen Z, Tan L, Yang B, Wu J, Li T, Wu H, Wu H, Xiang W. A mutant of seawater Arthrospira platensis with high polysaccharides production induced by space environment and its application potential. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Purification, characterization and antioxidant activity of selenium-containing polysaccharides from pennycress (Thlaspi arvense L.). Carbohydr Res 2022; 512:108498. [DOI: 10.1016/j.carres.2021.108498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
|
29
|
Li X, Chen Q, Liu G, Xu H, Zhang X. Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities. Int J Biol Macromol 2021; 190:730-738. [PMID: 34520778 DOI: 10.1016/j.ijbiomac.2021.09.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023]
Abstract
Polygonatum sibiricum is traditionally used as Chinese medicine for immunity enhancement. Exploration of polysaccharides from Polygonatum species would provide a wider insight into the studies on their chemical structures and function activities. In this study, the alkali-extracted polysaccharide from P. sibiricum (PSP) was isolated and examined. The polysaccharide was firstly isolated by ion-exchange chromatography equipped with DE52 column, followed by isolated through Superdex-200 column. The obtained PSPJWA fraction was a homogenous one with average molecular weight of 141 kDa. The monosaccharide composition was galactose, arabinose and rhamnose in a ratio of 14:4:1. The glycosidic linkages of PSPJWA fraction were indicated to be Araf-(1→, →5)-Araf-(1→, →3,5)-Araf-(1→, Galp-(1→, →4)-Galp-(1→, →4,6)-Galp-(1→ and →2,4)-Rhap-(1→ residue by methylation analysis. NMR and enzymatic studies showed that PSPJWA was a novel arabinogalactan-type structure. PSPJW polysaccharides with different molecular weight and similar chemical structure had different antioxidant activities. Together, P. sibiricum polysaccharide has the potential to be a natural antioxidant.
Collapse
Affiliation(s)
- Xiaojun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| | - Qi Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Guoku Liu
- College of Agronomy, Hebei Agricultural University, Baoding 071001, PR China
| | - Hairong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
30
|
Feng G, Laijin S, Chen S, Teng W, Dejian Z, Yin C, Shoudong G. In vitro and in vivo immunoregulatory activity of sulfated fucan from the sea cucumber A. leucoprocta. Int J Biol Macromol 2021; 187:931-938. [PMID: 34363824 DOI: 10.1016/j.ijbiomac.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 01/31/2023]
Abstract
The in vitro and in vivo immunoregulatory activity of a water-soluble sulfated fucan AL1-1 from the sea cucumber A. leucoprocta was elucidated. In vitro experiments showed that AL1-1 up-regulated immunostimulatory activities in RAW264.7 cells and that it could successfully promote ROS production and phagocytic activity, increase secretion levels of iNOS, and induce the production of considerable amounts of cytokines (TNF-α, IL-6, IL-1β and IL-12). We found that toll-like receptor 4 (TLR4) was mainly involved in AL1-1 mediated macrophage activation. AL1-1's in vivo immunomodulatory activity on cyclophosphamide (CY)-treated mice was investigated and it was shown that it could strongly enhance Sig A levels, promote the total antioxidant capacity (T-AOC), and reduce malondialdehyde (MDA) level in the intestine. It could also increase activities of superoxidase dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). These results demonstrate that AL1-1 has a significant effect on enhancing in vivo and in vitro immune response.
Collapse
Affiliation(s)
- Guo Feng
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Su Laijin
- Wenzhou University, Wenzhou Characteristic Food Resources Engineering and Technology Research Center, Wenzhou 325006, People's Republic of China
| | - Shen Chen
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Wang Teng
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Zhou Dejian
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Guo Shoudong
- School of Food Science and Pharmaceutical Engineering, Weifang Medical University, Weifang 261000, People's Republic of China.
| |
Collapse
|
31
|
Nigam S, Singh R, Bhardwaj SK, Sami R, Nikolova MP, Chavali M, Sinha S. Perspective on the Therapeutic Applications of Algal Polysaccharides. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:785-809. [PMID: 34305487 PMCID: PMC8294233 DOI: 10.1007/s10924-021-02231-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 05/04/2023]
Abstract
Abstract Algae are an enormous source of polysaccharides and have gained much interest in human flourishing as organic drugs. Algal polysaccharides have aroused interest in the health sector owing to the various bioactivities namely anticancer, antiviral, immunoregulation, antidiabetic and antioxidant effects. The research community has comprehensively described the importance of algal polysaccharides regarding their extraction, purification, and potential use in various sectors. However, regardless of all the intriguing properties and potency in the health sector, these algal polysaccharides deserve detailed investigation. Hence, the present review emphasizes extensively on the previous and latest developments in the extraction, purification, structural properties and therapeutic bioactivities of algal polysaccharides to upgrade the knowledge for further advancement in this area of research. Moreover, the review also addresses the challenges, prospective research gaps and future perspective. We believe this review can provide a boost to upgrade the traditional methods of algal polysaccharide production for the development of efficacious drugs that will promote human welfare. Graphic Abstract
Collapse
Affiliation(s)
- Sonal Nigam
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201 313 Uttar Pradesh India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| | - Sheetal Kaushik Bhardwaj
- Vant Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Rokkayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, 21944 Saudi Arabia
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str, 7017 Ruse, Bulgaria
| | - Murthy Chavali
- Nano Technology Research Centre (NTRC), MCETRC, and Aarshanano Composite Technologies Pvt. Ltd, Guntur, Andhra Pradesh 522 201 India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| |
Collapse
|
32
|
Wang T, Shen C, Guo F, Zhao Y, Wang J, Sun K, Wang B, Chen Y, Chen Y. Characterization of a polysaccharide from the medicinal lichen, Usnea longissima, and its immunostimulating effect in vivo. Int J Biol Macromol 2021; 181:672-682. [PMID: 33798588 DOI: 10.1016/j.ijbiomac.2021.03.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
A polysaccharide, CSL-0.1, was isolated from the medicinal lichen, Usnea longissima. CSL-0.1 was a neutral rhamnose-containing glucogalactomannan with a molecular weight of 7.86 × 104 Da. The polysaccharide had a core mannan structure with (1 → 6)-α-d-Manp units as the main chain and was substituted at the O-2 positions with side chains containing (1 → 2)-α-d-Manp residue, [3)-α-Glcp(1 → 4)-α-Glcp(1→] and 6-O-substituted β-d-Galf units. 2-O- and 2,3-di-O-substituted Rhap units. The effects of CSL-0.1 on intestinal immunity and antioxidant activity were evaluated. CSL-0.1 increased the spleen and thymus indices in a dose-dependent manner and conferred immunomodulation on reversing the Th1/Th2-related cytokine imbalance in cyclophosphamide (CP)-induced immunosuppressed mice. CSL-0.1 could also enhance the levels of secretory immunoglobulin A in CP-injected mice. Additionally, the antioxidant levels in the liver and intestine of the mice were increased 20%-50% after intragastric injection by CSL-0.1.
Collapse
Affiliation(s)
- Teng Wang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Chen Shen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Feng Guo
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Yuqin Zhao
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Jie Wang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Kunlai Sun
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Bin Wang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Yan Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China.
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China.
| |
Collapse
|
33
|
Shang XL, Liu CY, Dong HY, Peng HH, Zhu ZY. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from Wheat Bran. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Niu LL, Wu YR, Liu HP, Wang Q, Li MY, Jia Q. Optimization of extraction process, characterization and antioxidant activities of polysaccharide from Leucopaxillus giganteus. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00865-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Dieckol, an Algae-Derived Phenolic Compound, Suppresses UVB-Induced Skin Damage in Human Dermal Fibroblasts and Its Underlying Mechanisms. Antioxidants (Basel) 2021; 10:antiox10030352. [PMID: 33652913 PMCID: PMC7996756 DOI: 10.3390/antiox10030352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet (UV) irradiation is considered to be the primary environmental factor that causes skin damage. In the present study, we investigated the protective effect of dieckol (DK), a compound isolated from the brown seaweed Ecklonia cava, against UVB-induced skin damage in human dermal fibroblasts (HDF cells). The results indicated that DK effectively inhibited the activity of collagenase. DK remarkably reduced the intracellular reactive oxygen species level and improved the viability of UVB-irradiated HDF cells. Besides, DK significantly and dose-dependently improved collagen synthesis and inhibited intracellular collagenase activity in UVB-irradiated HDF cells. In addition, DK markedly reduced the expression of proinflammatory cytokines and matrix metalloproteinases. Further analyses revealed that these processes were mediated through the regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinase signaling pathways in the UVB-irradiated HDF cells. In conclusion, these results indicate that DK possesses strong in vitro photoprotective effects and therefore has the potential to be used as an ingredient in the cosmeceutical industry.
Collapse
|
36
|
Pan LC, Sun YY, Zhang XL, Zhu ZY, Liu CY, Sun HQ, Geng XQ, Jiang W, Wang JH. Structure, antioxidant property and protection on PC12 of a polysaccharide isolated and screened from Abelmoschus esculentus L.Moench (okra). Nat Prod Res 2021; 36:1441-1447. [PMID: 33605169 DOI: 10.1080/14786419.2021.1887867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AeP-P-2, a pectic polysaccharide, was extracted from the fruit pod of okra. It composed of rhamnose (Rha), arabinose (Ara), glucose (Glc), galactose (Gal) and galacturonic acid (GalA) with the ratio of 4.75:2.01:1.00:4.91:7.24. The main structural feature of AeP-P-2 are 1,4-linked galacturonan units (homogalacturonan backbone) and (1 → 2) and (1 → 2,4) linked Rha (rhamnogalacturonan I region). And the other side chains contained →1)-linked Ara, (1 → 5)-linked Ara, (1 → 4)-linked Glc, (1 → 6)-linked Gal, (1 → 4)-linked Rha, (1 → 2,4)-linked Rha, →1)-linked Ara and →1)-linked Gal. When the concentration of AeP-P-2 was 3.2 mg/mL, the scavenging rates on DPPH·, ABTS, O2-· and ·OH reached to 61.88%, 87.10%, 52.17% and 60.32%, respectively. AeP-P-2 also could protect PC12 cells from the damage of H2O2 and reduce apoptosis caused by oxidative damage by decreasing the level of ROS. The findings indicated that okra was a functional vegetable and AeP-P-2 was worth studying and developing into antioxidant component.
Collapse
Affiliation(s)
- Li-Chao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Yang-Yang Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xiao-Ling Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Qing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xue-Qing Geng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Wei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Jia-He Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P.R. China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
37
|
Tian H, Ju G, Li M, Fu W, Dai Y, Liang Z, Qiu Y, Qin Z, Yin X. Fluorescent “on–off–on” sensor based on N,S co-doped carbon dots from seaweed ( Sargassum carpophyllum) for specific detection of Cr( vi) and ascorbic acid. RSC Adv 2021. [DOI: 10.1039/d1ra06544k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A low-temperature carbonization method using seaweed (Sargassum carpophyllum) as a precursor was applied to prepare nitrogen and sulfur co-doped CDs (N,S-CDs).
Collapse
Affiliation(s)
- Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Guangxu Ju
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Wenzhe Fu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Yongcheng Dai
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Zhenyi Liang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Yuheng Qiu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, 570228, P. R. China
| |
Collapse
|
38
|
Xiao L, Sun S, Li K, Lei Z, Shimizu K, Zhang Z, Adachi Y. Effects of nanobubble water supplementation on biomass accumulation during mycelium cultivation of Cordyceps militaris and the antioxidant activities of extracted polysaccharides. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|