1
|
Rawindran H, Khoo KS, Satpati GG, Maity S, Chandran K, Lim JW, Tong WY, Setiabudi HD, Yunus NM. Composition of carbohydrate, protein and lipid derived from microalgae using thermally pretreated solid waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39559900 DOI: 10.1002/jsfa.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Microalgae are widely recognized for their capacity to generate value-added products in a variety of sectors, including the pharmaceutical and food industries, bioenergy industries and wastewater industries. The quality of a microalga is significantly influenced by its proliferation. Along with growth, the biochemical profile may also vary based on the nutrient that is supplemented. The majority of the supplemented nutrients utilized are not in a functional state, as they are typically extracted in liquid form or pretreated prior to use. Parallel to numerous commonly applied pretreatment processes, including chemical, mechanical and biological, thermal pretreatment appears to receive less attention. Hence it is crucial to comprehend the potential for thermal pretreatment as well as its mechanism in militating the solid waste to release additional nutrients in order to enhance the biochemical profile of microalgae. The current review takes a closer look at the impact of various thermal pretreatments on solid waste on influencing microalgal performance in terms of their overall biochemical profiles such as carbohydrates, proteins and lipids. This approach is likely to enhance the circular economy by utilizing waste products and effectively closing the loop on waste. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- Department of Chemistry, Faculty of Science, Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata, India
| | - Sudatta Maity
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Krittika Chandran
- School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, Mahsa University, Jenjarom, Malaysia
| | - Jun Wei Lim
- HICoE - Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Malaysia
| | - Herma Dina Setiabudi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Malaysia
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Gambang, Malaysia
| | - Normawati M Yunus
- Centre of Research in Ionic Liquids (CORIL), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| |
Collapse
|
2
|
Rudnyckyj S, Kucheryavskiy S, Chaturvedi T, Thomsen MH. Organic waste and beechwood cellulose blend saccharification and validation of hydrolysates by fermentation. Appl Microbiol Biotechnol 2024; 108:517. [PMID: 39540966 PMCID: PMC11564323 DOI: 10.1007/s00253-024-13349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study demonstrates the sustainable advancement of fermentation media by blending the organic fraction of municipal solid waste (OFMSW) with organosolv beechwood cellulose. Investigations examined the effects of enzyme dosages and OFMSW integration into organosolv beechwood cellulose on sugar yield. The findings indicate that OFMSW inclusion and Cellic® CTec3 dosage significantly influence hydrolysis across two different batches of beechwood cellulose. Experimental data showed that OFMSW inclusion levels of 35% and 45% (w/w) produced sugar levels comparable to pure beechwood cellulose, achieving 58% to 68% (w/w) saccharification with sugar concentrations of 44 to 46 g/L. This highlights OFMSW's potential as a buffer substitute during the enzymatic conversion of organosolv cellulose. The resulting sugar-rich hydrolysates, derived from OFMSW-cellulose blends and pure cellulose, were evaluated for ethanol and cell biomass production using Saccharomyces cerevisiae and Mucor indicus, yielding 30 g of ethanol/L hydrolysate. Furthermore, OFMSW inclusion in beechwood cellulose proved to be an excellent alternative to synthetic nitrogen agents for S. cerevisiae cell production, reaching 12.2 g of biomass/L and surpassing the biomass concentration from cultivation on cellulose hydrolysate with nitrogen supplementation by threefold. However, M. indicus did not grow in the OFMSW-cellulose blend, suggesting that the inhibitory compounds of OFMSW may be a bottleneck in the proposed process. The present study demonstrates the benefits of incorporating OFMSW into cellulose material, as it enhances both cost-effectiveness and sustainability. This is attributed to the natural buffering properties and nitrogen content of OFMSW, which reduces the need for synthetic agents in fermentation-based lignocellulose biorefineries. KEY POINTS: • OFMSW inclusion significantly influences beechwood cellulose saccharification. • OFMSW could be an excellent alternative for synthetic agents in biorefinery. • S. cerevisiae achieved higher biomass growth on OFMSW/cellulose mix compared to YPD.
Collapse
Affiliation(s)
- Stanislav Rudnyckyj
- Department of Energy, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| | - Sergey Kucheryavskiy
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Tanmay Chaturvedi
- Department of Energy, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | | |
Collapse
|
3
|
Sayim Shakil MA, Ritu JR, Akter A, Fatima N, Haque MM, Khan S. From waste to resource: Effects of digested rotten potato supernatant on the growth, total biomass and nutrient composition of Chlorella vulgaris. Heliyon 2024; 10:e35880. [PMID: 39224280 PMCID: PMC11367023 DOI: 10.1016/j.heliyon.2024.e35880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
A study was carried out to evaluate the growth performance of Chlorella vulgaris, a green microalga, in three different concentrations of digested rotten potato supernatant (DRPS) for 16 days. C. vulgaris was grown in 20 % (T1), 40 % (T2), and 60 % (T3) of the DRPS and at the same time in Bold Basal Medium (BBM) as a control (T4). A significantly highest cell density of C. vulgaris was found in T1 (192.83 ± 1.75 × 105 cells mL-1) in comparison to T2 (136.83 ± 5.58 × 105 cells mL-1), and T3 (99.11 ± 5.38 × 105 cells mL-1) (p < 0.001 for all comparisons) while the cell density at T1 (192.83 ± 1.75 × 105 cells mL-1) and T4 (180.907 ± 4.58 × 105 cells mL-1) did not differ significantly (p = 0.227). Moreover, the mean daily division rate of C. vulgaris was significantly higher in T1 (0.340 ± 0.001 divisions day-1) in comparison to other concentrations of DRPS (p < 0.001 for all comparisons). The maximum value of total biomass (1.07 ± 0.10 g L-1) was found in T1 which was statistically similar to those in T4 and T2. In addition, there was no significant difference between the mean maximum values of chlorophyll-a content and optical density of C. vulgaris in T1 and T4. The highest protein content of 42.67 ± 0.57 % was observed in T4 which was significantly higher than T1 (39.43 ± 1.67 %) (p = 0.027). It is also worth mentioning that there was no significant difference in the crude lipid content of the microalgae grown in T1 (10.06 ± 0.17 %) and T4 (9.88 ± 0.14 %) (p = 0.616). Hence, 20 % DRPS can be used as an alternative culture media of BBM for C. vulgaris with a broad aim to accelerate the sustainable advancement of microalgal production.
Collapse
Affiliation(s)
| | | | - Amina Akter
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Naushin Fatima
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Mahfuzul Haque
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Saleha Khan
- Laboratory of Plankton Research, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
4
|
Marques F, Pereira F, Machado L, Martins JT, Pereira RN, Costa MM, Genisheva Z, Pereira H, Vicente AA, Teixeira JA, Geada P. Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate. Foods 2024; 13:1018. [PMID: 38611325 PMCID: PMC11011475 DOI: 10.3390/foods13071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A significant fraction of the food produced worldwide is currently lost or wasted throughout the supply chain, squandering natural and economic resources. Food waste valorization will be an important necessity in the coming years. This work investigates the ability of food waste to serve as a viable nutritional substrate for the heterotrophic growth of Chlorella vulgaris. The impact of different pretreatments on the elemental composition and microbial contamination of seven retail food waste mixtures was evaluated. Among the pretreatment methods applied to the food waste formulations, autoclaving was able to eliminate all microbial contamination and increase the availability of reducing sugars by 30%. Ohmic heating was also able to eliminate most of the contaminations in the food wastes in shorter time periods than autoclave. However, it has reduced the availability of reducing sugars, making it less preferable for microalgae heterotrophic cultivation. The direct utilization of food waste containing essential nutrients from fruits, vegetables, dairy and bakery products, and meat on the heterotrophic growth of microalgae allowed a biomass concentration of 2.2 × 108 cells·mL-1, being the culture able to consume more than 42% of the reducing sugars present in the substrate, thus demonstrating the economic and environmental potential of these wastes.
Collapse
Affiliation(s)
- Fabiana Marques
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Francisco Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Luís Machado
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Monya M. Costa
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | | | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro Geada
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Chen N, Xie Y, Liang Z, Shim H. Biodiesel production and properties estimation from food waste and domestic wastewater by Rhodosporidium toruloides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119368. [PMID: 37866181 DOI: 10.1016/j.jenvman.2023.119368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Producing biodiesel from food waste (FW) would benefit both environment and economy. Current study investigated biodiesel production from food waste and domestic wastewater by utilizing the oleaginous yeast Rhodosporidium toruloides under non-sterile condition. The potential of biolipid production from the mixture of effluents of existing local FW treatment facilities and domestic wastewater was firstly evaluated. Then, to increase the nutrient recovery efficiency, FW hydrolysis process by crude enzymes produced from solid FWs by Aspergillus oryzae was introduced and the conditions were further optimized. The optimized hydrolysis process resulted in reducing sugar (RS) yield of 251.81 ± 8.09 mg gdryFW-1 and free amino nitrogen (FAN) yield of 7.70 ± 0.74 mg gdryFW-1 while waste oil with the RS yield of 93.54 ± 0.01 mg gdryFW-1 was easily separated without solvent usage. Compared to the hydrolysate only used, when mixed with domestic wastewater, the results showed obvious enhancement on biomass yield, biolipid yield, and wastewater treatment efficiency. The maximum biolipid yield was 29.80 ± 0.50 mg gdryFW-1 and the estimated quality of biodiesel produced from the biolipid met both EN 14214 and ASTM D6751 standards.
Collapse
Affiliation(s)
- Naiwen Chen
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Yimin Xie
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Zhiwei Liang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
6
|
Kumar Y, Kaur S, Kheto A, Munshi M, Sarkar A, Om Pandey H, Tarafdar A, Sindhu R, Sirohi R. Cultivation of microalgae on food waste: Recent advances and way forward. BIORESOURCE TECHNOLOGY 2022; 363:127834. [PMID: 36029984 DOI: 10.1016/j.biortech.2022.127834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are photosynthetic microbes that can synthesize compounds of therapeutic potential with wide applications in the food, bioprocessing and pharmaceutical sector. Recent research advances have therefore, focused on finding suitable economic substrates for the sustainable cultivation of microalgae. Among such substrates, food derived waste specifically from the starch, meat, dairy, brewery, oil and fruit and vegetable processing industries has gained popularity but poses numerous challenges. Pretreatment, dilution of waste water supernatants, mixing of different food waste streams, utilizing two-stage cultivation and other biorefinery approaches have been intensively explored for multifold improvement in microalgal biomass recovery from food waste. This review discusses the advances and challenges associated with cultivation of microalgae on food waste. The review suggests that there is a need to standardize different waste substrates in terms of general composition, genetically engineered microalgal strains, tackling process scalability issues, controlling wastewater toxicity and establishing a waste transportation chain.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Samandeep Kaur
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Ankan Kheto
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Mohona Munshi
- Division of Food Technology, Department of Chemical Engineering, VFSTR, Guntur, A.P, India
| | - Ayan Sarkar
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
7
|
Towards a Resilient and Resource-Efficient Local Food System Based on Industrial Symbiosis in Härnösand: A Swedish Case Study. SUSTAINABILITY 2022. [DOI: 10.3390/su14042197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endeavour to align the goals of the Swedish food strategy with the national environmental quality objectives and the 17 global SDGs, presents an extraordinary challenge that calls for systemic innovation. Industrial symbiosis can potentially provide the means for increasing sustainable food production, using locally sub-exploited resources that can reduce the need for land, agrochemicals, transport and energy. This case study of the municipality of Härnösand, aims to assess opportunities and challenges for using waste flows and by-products for local food production, facilitated by industrial symbiosis. A potential symbiotic network was developed during three workshops with the main stakeholders in Härnösand. The potential of the COVID-19 pandemic to instigate policy changes, behavioural changes and formation of new alliances that may catalyse the transition towards food systems based on industrial symbiosis is discussed. The material flow inventory revealed that many underexploited resource flows were present in quantities that rendered them commercially interesting. Resources that can be used for innovative food production include, e.g., lignocellulosic residues, rock dust, and food processing waste. The internalised drive among local companies interested in industrial symbiosis and the emerging symbiotic relations, provide a fertile ground for the establishment of a local network that can process the sub-exploited material flows. Although there are multiple challenges for an industrial symbiosis network to form in Härnösand, this study shows that there is a significant potential to create added value from the region’s many resources while at the same time making the food system more sustainable and resilient, by expanding industrial symbiosis practices.
Collapse
|
8
|
Pleissner D, Lindner AV, Händel N. Heterotrophic cultivation of Galdieria sulphuraria under non-sterile conditions in digestate and hydrolyzed straw. BIORESOURCE TECHNOLOGY 2021; 337:125477. [PMID: 34320757 DOI: 10.1016/j.biortech.2021.125477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Non-sterile heterotrophic cultivation of Galdieria sulphuraria in presence of digestate as well as straw after hydrolysis was investigated. G. sulphuraria can be grown in pure digestate at rates of 0.9 day-1 with glucose. However, a proteolytic treatment of digestate resulted in increased growth rates (1.2 day-1) and doubled cell concentrations. Furthermore, G. sulphuraria can utilize glucose obtained after straw hydrolysis. Biomass yields in glucose limited cultures were around 0.9 g per g glucose, while only 0.2 g biomass was formed per g glucose in glucose sufficient cultures. Biomass composition (w/w) of G. sulphuraria grown in digestate supplemented with straw hydrolysate consisted of 20% carbohydrates, 37% proteins and 3% lipids. This study revealed the potential to utilize agricultural waste streams to form algal biomass rich in proteins and may pave the way to novel utilization strategies to be implemented in rural areas.
Collapse
Affiliation(s)
- Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, 21335 Lüneburg, Germany; Institute for Food and Environmental Research (ILU), Papendorfer Weg 3, 14806 Bad Belzig, Germany.
| | - Astrid Victoria Lindner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, 21335 Lüneburg, Germany
| | - Nicole Händel
- Institute for Food and Environmental Research (ILU), Papendorfer Weg 3, 14806 Bad Belzig, Germany
| |
Collapse
|
9
|
Haske-Cornelius O, Gierlinger S, Vielnascher R, Gabauer W, Prall K, Pellis A, Guebitz GM. Cultivation of heterotrophic algae on paper waste material and digestate. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Sci Rep 2021; 11:6779. [PMID: 33762646 PMCID: PMC7991646 DOI: 10.1038/s41598-021-86372-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Supplementing cultivation media with exogenous carbon sources enhances biomass and lipid production in microalgae. Utilization of renewable organic carbon from agricultural residues can potentially reduce the cost of algae cultivation, while enhancing sustainability. In the present investigation a medium was developed from sweet sorghum bagasse for cultivation of Chlorella under mixotrophic conditions. Using response surface methodology, the optimal values of critical process parameters were determined, namely inoculum cell density (O.D.750) of 0.786, SSB hydrolysate content of the medium 25% v/v, and zero medium salinity, to achieve maximum lipid productivity of 120 mg/L/d. Enhanced biomass (3.44 g/L) and lipid content (40% of dry cell weight) were observed when the alga was cultivated in SSB hydrolysate under mixotrophic conditions compared to heterotrophic and photoautotrophic conditions. A time course investigation revealed distinct physiological responses in terms of cellular growth and biochemical composition of C. vulgaris cultivated in the various trophic modes. The determined carbohydrate and lipid profiles indicate that sugar addition to the cultivation medium boosts neutral lipid synthesis compared to structural lipids, suggesting that carbon flux is channeled towards triacylglycerol synthesis in the cells. Furthermore, the fatty acid profile of lipids extracted from mixotrophically grown cultures contained more saturated and monosaturated fatty acids, which are suitable for biofuel manufacturing. Scale-up studies in a photobioreactor using SSB hydrolysate achieved a biomass concentration of 2.83 g/L consisting of 34% lipids and 26% carbohydrates. These results confirmed that SSB hydrolysate is a promising feedstock for mixotrophic cultivation of Chlorella and synthesis of algal bioproducts and biofuels.
Collapse
|
11
|
The Prospects of Agricultural and Food Residue Hydrolysates for Sustainable Production of Algal Products. ENERGIES 2020. [DOI: 10.3390/en13236427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The growing demand of microalgal biomass for biofuels, nutraceuticals, cosmetics, animal feed, and other bioproducts has created a strong interest in developing low-cost sustainable cultivation media and methods. Agricultural and food residues represent low-cost abundant and renewable sources of organic carbon that can be valorized for the cultivation of microalgae, while converting them from an environmental liability to an industrial asset. Biochemical treatment of such residues results in the release of various sugars, primarily glucose, sucrose, fructose, arabinose, and xylose along with other nutrients, such as trace elements. These sugars and nutrients can be metabolized in the absence of light (heterotrophic) or the presence of light (mixotrophic) by a variety of microalgae species for biomass and bioproduct production. The present review provides an up-to-date critical assessment of the prospects of various types of agricultural and food residues to serve as algae feedstocks and the microalgae species that can be grown on such residues under a range of cultivation conditions. Utilization of these feedstocks can create potential industrial applications for sustainable production of microalgal biomass and bioproducts.
Collapse
|