1
|
Song X, Ju Y, Chen L, Zhang W. Strategies and tools to construct stable and efficient artificial coculture systems as biosynthetic platforms for biomass conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:148. [PMID: 39702246 DOI: 10.1186/s13068-024-02594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Inspired by the natural symbiotic relationships between diverse microbial members, researchers recently focused on modifying microbial chassis to create artificial coculture systems using synthetic biology tools. An increasing number of scientists are now exploring these systems as innovative biosynthetic platforms for biomass conversion. While significant advancements have been achieved, challenges remain in maintaining the stability and productivity of these systems. Sustaining an optimal population ratio over a long time period and balancing anabolism and catabolism during cultivation have proven difficult. Key issues, such as competitive or antagonistic relationships between microbial members, as well as metabolic imbalances and maladaptation, are critical factors affecting the stability and productivity of artificial coculture systems. In this article, we critically review current strategies and methods for improving the stability and productivity of these systems, with a focus on recent progress in biomass conversion. We also provide insights into future research directions, laying the groundwork for further development of artificial coculture biosynthetic platforms.
Collapse
Affiliation(s)
- Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yue Ju
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China.
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Turab A, Sun X, Ma Y, Elahi A, Li P, Majeed Y, Sun Y. Transcriptomics and metabonomics reveal molecular mechanisms promoting lipid production in Haematococcus pluvialis co-mutated by atmospheric and room temperature plasma with ethanol. BIORESOURCE TECHNOLOGY 2024; 418:131958. [PMID: 39647716 DOI: 10.1016/j.biortech.2024.131958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Atmospheric and room temperature plasma mutation and co-mutation with ethanol were employed to generate Haematococcus pluvialis mutants AV3 and AV8. These mutants were screened using multiple indices of chlorophyll fluorescence, quantum yield, lethality, growth rate, dry cell weight, and lipid content. Compared to the wild strain, the mutants demonstrated genetic stability (*p > 0.05) over three cultivation periods, with biomass, lipid content, and growth rate increasing by over 16 %, 55 %, and 45 %, respectively. Lipid accumulation was correlated with higher activities of key lipid biosynthesis enzymes, acetyl-CoA carboxylase, and diacylglycerol acyltransferases. Transcriptomic and metabolomic analyses revealed differentially expressed genes and differential metabolites, with significant changes in glutathione, arginine and Pyruvate metabolism pathways. This study provides new insights into the molecular mechanisms behind enhanced lipid synthesis and highlights the potential of plasma mutation for improving lipid production in microalgae, offering a promising avenue for biofuel production.
Collapse
Affiliation(s)
- Ali Turab
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yihua Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ahsan Elahi
- School of Chemical Engineering, Zhengzhou University, ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Pengfei Li
- Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yasir Majeed
- Yasir Majeed- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Youreng Sun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
3
|
Mariam I, Bettiga M, Rova U, Christakopoulos P, Matsakas L, Patel A. Ameliorating microalgal OMEGA production using omics platforms. TRENDS IN PLANT SCIENCE 2024; 29:799-813. [PMID: 38350829 DOI: 10.1016/j.tplants.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
4
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
5
|
Oleaginous Heterotrophic Dinoflagellates—Crypthecodiniaceae. Mar Drugs 2023; 21:md21030162. [PMID: 36976211 PMCID: PMC10055936 DOI: 10.3390/md21030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The heterotrophic Crypthecodinium cohnii is a major model for dinoflagellate cell biology, and a major industrial producer of docosahexaenoic acid, a key nutraceutical and added pharmaceutical compound. Despite these factors, the family Crypthecodiniaceae is not fully described, which is partly attributable to their degenerative thecal plates, as well as the lack of ribotype-referred morphological description in many taxons. We report here significant genetic distances and phylogenetic cladding that support inter-specific variations within the Crypthecodiniaceae. We describe Crypthecodinium croucheri sp. nov. Kwok, Law and Wong, that have different genome sizes, ribotypes, and amplification fragment length polymorphism profiles when compared to the C. cohnii. The interspecific ribotypes were supported by distinctive truncation-insertion at the ITS regions that were conserved at intraspecific level. The long genetic distances between Crypthecodiniaceae and other dinoflagellate orders support the separation of the group, which includes related taxons with high oil content and degenerative thecal plates, to be ratified to the order level. The current study provides the basis for future specific demarcation-differentiation, which is an important facet in food safety, biosecurity, sustainable agriculture feeds, and biotechnology licensing of new oleaginous models.
Collapse
|
6
|
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 2023; 50:kuac023. [PMID: 36323428 PMCID: PMC9936214 DOI: 10.1093/jimb/kuac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Xianzhong Yin
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
7
|
Wang T, Wang F, Zeng L, Guo P, Wu Y, Chen L, Zhang W. Propanol and 1, 3-propanediol enhance fatty acid accumulation synergistically in Schizochytrium ATCC 20888. Front Microbiol 2023; 13:1106265. [PMID: 36845976 PMCID: PMC9947470 DOI: 10.3389/fmicb.2022.1106265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 02/11/2023] Open
Abstract
The effects of propanol and 1, 3-propanediol on fatty acid and biomass accumulation in Schizochytrium ATCC 20888 were explored. Propanol increased the contents of saturated fatty acids and total fatty acids by 55.4 and15.3%, while 1, 3-propanediol elevated the polyunsaturated fatty acids, total fatty acids and biomass contents by 30.7, 17.0, and 6.89%. Although both of them quench ROS to increase fatty acids biosynthesis, the mechanisms are different. The effect of propanol did not reflect on metabolic level while 1, 3-propanediol elevated osmoregulators contents and activated triacylglycerol biosynthetic pathway. The triacylglycerol content and the ratio of polyunsaturated fatty acids to saturated fatty acids were significantly increased by 2.53-fold, which explained the higher PUFA accumulation in Schizochytrium after adding 1, 3- propanediol. At last, the combination of propanol and 1, 3-propanediol further elevated total fatty acids by approximately 1.2-fold without compromising cell growth. These findings are valuable for scale-up production of designed Schizochytrium oil for various application purposes.
Collapse
Affiliation(s)
- Tiantian Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China,*Correspondence: Fangzhong Wang, ✉
| | - Lei Zeng
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yawei Wu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Lei Chen, ✉
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Arora N, Lo E, Philippidis GP. A two-prong mutagenesis and adaptive evolution strategy to enhance the temperature tolerance and productivity of Nannochloropsis oculata. BIORESOURCE TECHNOLOGY 2022; 364:128101. [PMID: 36241066 DOI: 10.1016/j.biortech.2022.128101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Incorporation of microalgae in biorefineries intended to help society reach carbon neutrality is hindered by algal growth inhibition at high temperatures, necessitating the use of costly and carbon-intensive cooling systems. In the present study, a two-prong strategy of random mutagenesis and adaptive laboratory evolution to generate robust thermotolerant strains of Nannochloropsis oculata, was used. The best mutants demonstrated increased productivity at 35 °C, which was 10 °C higher than the optimal temperature of the wild type. In a 2-L photobioreactor at 35 °C, biomass and lipid productivity were 1.43-fold and 2.24-fold higher, respectively, than wild type at 25 °C. Higher pigment and carbohydrate content contributed to the mutants' rapid growth and enhanced photosynthetic efficiency. Metabolomics and lipidomics showed rewiring of the central carbon metabolism and membrane lipid synthesis in thermotolerant strains to ensure cellular homeostasis without compromising productivity. Tagatose and phosphatidylethanolamine upregulation were identified as future genetic targets for further enhancing lipid production.
Collapse
Affiliation(s)
- Neha Arora
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Enlin Lo
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
9
|
Mechanisms of Sodium-Acetate-Induced DHA Accumulation in a DHA-Producing Microalga, Crypthecodinium sp. SUN. Mar Drugs 2022; 20:md20080508. [PMID: 36005511 PMCID: PMC9409966 DOI: 10.3390/md20080508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that is critical for the intelligence and visual development of infants. Crypthecodinium is the first microalga approved by the Food and Drug Administration for DHA production, but its relatively high intracellular starch content restricts fatty acid accumulation. In this study, different carbon sources, including glucose (G), sodium acetate (S) and mixed carbon (M), were used to investigate the regulatory mechanisms of intracellular organic carbon distribution in Crypthecodinium sp. SUN. Results show that glucose favored cell growth and starch accumulation. Sodium acetate limited glucose utilization and starch accumulation but caused a significant increase in total fatty acid (TFA) accumulation and the DHA percentage. Thus, the DHA content in the S group was highest among three groups and reached a maximum (10.65% of DW) at 96 h that was 2.92-fold and 2.24-fold of that in the G and M groups, respectively. Comparative transcriptome analysis showed that rather than the expression of key genes in fatty acids biosynthesis, increased intracellular acetyl-CoA content appeared to be the key regulatory factor for TFA accumulation. Additionally, metabolome analysis showed that the accumulated DHA-rich metabolites of lipid biosynthesis might be the reason for the higher TFA content and DHA percentage of the S group. The present study provides valuable insights to guide further research in DHA production.
Collapse
|
10
|
Didrihsone E, Dubencovs K, Grube M, Shvirksts K, Suleiko A, Suleiko A, Vanags J. Crypthecodinium cohnii Growth and Omega Fatty Acid Production in Mediums Supplemented with Extract from Recycled Biomass. Mar Drugs 2022; 20:68. [PMID: 35049923 PMCID: PMC8779103 DOI: 10.3390/md20010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Crypthecodinium cohnii is a marine heterotrophic dinoflagellate that can accumulate high amounts of omega-3 polyunsaturated fatty acids (PUFAs), and thus has the potential to replace conventional PUFAs production with eco-friendlier technology. So far, C. cohnii cultivation has been mainly carried out with the use of yeast extract (YE) as a nitrogen source. In the present study, alternative carbon and nitrogen sources were studied: the extraction ethanol (EE), remaining after lipid extraction, as a carbon source, and dinoflagellate extract (DE) from recycled algae biomass C. cohnii as a source of carbon, nitrogen, and vitamins. In mediums with glucose and DE, the highest specific biomass growth rate reached a maximum of 1.012 h-1, while the biomass yield from substrate reached 0.601 g·g-1. EE as the carbon source, in comparison to pure ethanol, showed good results in terms of stimulating the biomass growth rate (an 18.5% increase in specific biomass growth rate was observed). DE supplement to the EE-based mediums promoted both the biomass growth (the specific growth rate reached 0.701 h-1) and yield from the substrate (0.234 g·g-1). The FTIR spectroscopy data showed that mediums supplemented with EE or DE promoted the accumulation of PUFAs/docosahexaenoic acid (DHA), when compared to mediums containing glucose and commercial YE.
Collapse
Affiliation(s)
- Elina Didrihsone
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
| | - Konstantins Dubencovs
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
- Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV1048 Riga, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, LV1004 Riga, Latvia; (M.G.); (K.S.)
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, LV1004 Riga, Latvia; (M.G.); (K.S.)
| | - Anastasija Suleiko
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
| | - Arturs Suleiko
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
| | - Juris Vanags
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
- Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV1048 Riga, Latvia
| |
Collapse
|
11
|
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. BIORESOURCE TECHNOLOGY 2022; 344:126196. [PMID: 34710610 DOI: 10.1016/j.biortech.2021.126196] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics, an essential tool in modern synthetic biology based on the design-build-test-learn platform, is useful for obtaining a detailed understanding of cellular metabolic mechanisms through comprehensive analyses of the metabolite pool size and its dynamic changes. Metabolomics is critical to the design of a rational metabolic engineering strategy by determining the rate-limiting reaction and assimilated carbon distribution in a biosynthetic pathway of interest. Microalgae and cyanobacteria are promising photosynthetic producers of biofuels and bio-based chemicals, with high potential for developing a bioeconomic society through bio-based carbon neutral manufacturing. Metabolomics technologies optimized for photosynthetic organisms have been developed and utilized in various microalgal and cyanobacterial species. This review provides a concise overview of recent achievements in photosynthetic metabolomics, emphasizing the importance of microalgal and cyanobacterial cell factories that satisfy industrial requirements.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
12
|
Zeng L, Bi Y, Guo P, Bi Y, Wang T, Dong L, Wang F, Chen L, Zhang W. Metabolic Analysis of Schizochytrium Mutants With High DHA Content Achieved With ARTP Mutagenesis Combined With Iodoacetic Acid and Dehydroepiandrosterone Screening. Front Bioeng Biotechnol 2021; 9:738052. [PMID: 34869256 PMCID: PMC8637758 DOI: 10.3389/fbioe.2021.738052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone screening led to three mutants, 6–8, 6–16 and 6–23 all with increased growth and DHA accumulations. A LC/MS metabolomic analysis revealed the increased metabolism in PPP and EMP as well as the decreased TCA cycle might be relevant to the increased growth and DHA biosynthesis in the mutants. Finally, the mutant 6–23, which achieved the highest growth and DHA accumulation among all mutants, was evaluated in a 5 L fermentor. The results showed that the DHA concentration and productivity in mutant 6–23 were 41.4 g/L and 430.7 mg/L/h in fermentation for 96 h, respectively, which is the highest reported so far in literature. The study provides a novel strain improvement strategy for DHA-producing Schizochytrium.
Collapse
Affiliation(s)
- Lei Zeng
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yanqi Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yali Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tiantian Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liang Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|