1
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2024:1-29. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
2
|
Li Y, Ye Y, Li S, Feng J, Liu X, Che X, Jiang Q, Chen X. Transcriptomic analysis of the antioxidant responses and immunomodulatory effects of dietary melatonin in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109173. [PMID: 37879512 DOI: 10.1016/j.fsi.2023.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to investigate the effects of dietary melatonin (MT) levels on the antioxidant capacity, immunomodulatory, and transcriptional regulation of red swamp crayfish. Six experimental diets with different levels of MT (0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg diet) were fed to juvenile crayfish for 60 d. The transcriptome data of the control group and the group supplemented with dietary MT at 165.1 mg/kg were obtained using RNA-seq. In total, 3653 differentially expressed genes (2082 up-regulated and 1571 down-regulated) were identified. Pathways and genes related to antioxidant immune and growth performance were verified by qRT-PCR. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (165.1 mg/kg) group compared to the control group. Analysis of antioxidant immune-related enzymes in the hepatopancreas demonstrated that dietary MT (165.1 mg/kg) significantly increased activities of catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase and significantly decreased aspartate aminotransferase and alanine aminotransferase activity. At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immune and development, which included toll-like receptors, Crustin, C-type lectin, and so on. To conclude, MT could be used as a supplement in crayfish feed to increase immunity and antioxidant capacity and according to the broken line regression, the ideal MT concentration was the 159.02 mg/kg. Overall, this study demonstrates the role of melatonin in the antioxidant responses and immunomodulatory of Procambarus clarkii, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Xiaolong Chen
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| |
Collapse
|
3
|
Casanova LM, Mendes LBB, Corrêa TDS, da Silva RB, Joao RR, Macrae A, Vermelho AB. Development of Microalgae Biodiesel: Current Status and Perspectives. Microorganisms 2022; 11:microorganisms11010034. [PMID: 36677325 PMCID: PMC9862501 DOI: 10.3390/microorganisms11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Microalgae are regarded as a promising source of biodiesel. In contrast with conventional crops currently used to produce commercial biodiesel, microalgae can be cultivated on non-arable land, besides having a higher growth rate and productivity. However, microalgal biodiesel is not yet regarded as economically competitive, compared to fossil fuels and crop-based biodiesel; therefore, it is not commercially produced. This review provides an overall perspective on technologies with the potential to increase efficiency and reduce the general costs of biodiesel production from microalgae. Opportunities and challenges for large-scale production are discussed. We present the current scenario of Brazilian research in the field and show a successful case in the research and development of microalgal biodiesel in open ponds by Petrobras. This publicly held Brazilian corporation has been investing in research in this sector for over a decade.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| | | | - Thamiris de Souza Corrêa
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Rafael Richard Joao
- Centro de Pesquisa Leopoldo Miguez de Mello, Petrobrás, Rio de Janeiro 21941-915, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| |
Collapse
|
4
|
Yuan X, An J, Zheng T, Liu W. Exogenous melatonin improves salt tolerance mainly by regulating the antioxidant system in cyanobacterium Nostoc flagelliforme. PeerJ 2022; 10:e14479. [PMID: 36518273 PMCID: PMC9744160 DOI: 10.7717/peerj.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Melatonin is a multifunctional nontoxic bio-stimulant or signaling molecule, generally distributing in different animal and plant organs for invigorating numerous physiological processes against abiotic stresses. In this study, we investigated the potential impact of melatonin on the cyanobacterium Nostoc flagelliforme when exposed to salt stress according to some biochemical and physiological parameters, such as relative electrolyte leakage, PSII activity, and photosynthetic pigments including chlorophyll a, phycocyanobilin, and phycoerythrobilin. We found that melatonin could also maintain K+ homeostasis in salt-stressed N. flagelliforme. These above results confirmed melatonin had multiple functions in hyperosmotic stress and ion stress caused by salinity. Notably, we observed melatonin could regulate the reactive oxygen species (ROS) signal and distinctly decrease the content of hydrogen peroxide and superoxide anion in salt-stressed cells, which were largely attributed to the increased antioxidant enzymes activities including catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase. Finally, qRT-PCR analysis showed that melatonin stimulated the expression of antioxidant genes (NfCAT, NfSOD, and NfGR). In general, our findings demonstrate melatonin has beneficial effects on N. flagelliforme under salt stress by intensively regulating antioxidant system.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Jing An
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wenjian Liu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| |
Collapse
|
5
|
Wei Q, Yao J, Chen R, Yang S, Tang Y, Ma X. Low-frequency ultrasound and nitrogen limitation induced enhancement in biomass production and lipid accumulation of Tetradesmus obliquus FACHB-12. BIORESOURCE TECHNOLOGY 2022; 358:127387. [PMID: 35636673 DOI: 10.1016/j.biortech.2022.127387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The two-stage cultivation strategy was optimized in this study to simultaneously promote the growth and lipid accumulation of Tetradesmus obliquus. Results showed that the optimal dual-stress conditions were nitrogen concentration at 25 mg N·L-1 and low-frequency ultrasound at 200 Watt, 1 min, and 8 h interval. The biomass and lipid content of Tetradesmus obliquus were increased by 32.1% and 44.5%, respectively, comparing to the control, and the lipid productivity reached 86.97 mg-1·L-1·d-1 at the end of the cultivation period. The protein and photosynthetic pigment contents of microalgae decreased by 22.4% and 14.0% under dual stress comparing to the control environment. In addition, dual stress cultivation of microalgae presented higher level of antioxidant capacity to balance to oxidation level in microalgal cells. This study provides a new insight for microalgae growth and lipid accumulation with dual stress stimulation.
Collapse
Affiliation(s)
- Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Jinjie Yao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Ruge Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Shangru Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, PR China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Li X, Gu D, You J, Qiao T, Yu X. Gamma-aminobutyric acid coupled with copper ion stress stimulates lipid production of green microalga Monoraphidium sp. QLY-1 through multiple mechanisms. BIORESOURCE TECHNOLOGY 2022; 352:127091. [PMID: 35364236 DOI: 10.1016/j.biortech.2022.127091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Induction of copper ion (Cu2+) stress is a method used to increase lipid accumulation in microalgae, but it decreases cell growth. In this work, the impacts of gamma-aminobutyric acid (GABA) coupled with Cu2+ stress on the biomass and oil yield in Monoraphidium sp. QLY-1 were investigated. Results suggested that the combined treatment of GABA and Cu2+ resulted in a higher lipid content (55.13%) than Cu2+ treatment (48.43%). Furthermore, GABA addition upregulated the levels of lipid-relevant genes, cellular GABA, ethylene (ETH), and antioxidant enzyme activities and alleviated oxidative damage caused by Cu2+ stress. The autophagy-relevant gene atg8 was also upregulated by GABA treatment. Further exploration indicated that cell autophagy induced the lipid content up to 58.09% with GABA and Cu2+ stress treatment. This investigation demonstrates that the coupling strategy can stimulate lipid production and shed light on the underlying mechanisms in lipid biosynthesis, cell autophagy, and stress response of microalgae.
Collapse
Affiliation(s)
- Ximing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, China
| | - Tengsheng Qiao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Qiao T, Gu D, Zhu L, Zhao Y, Zhong DB, Yu X. Coupling of myo-inositol with salinity regulates ethylene-induced microalgal lipid hyperproduction in molasses wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151765. [PMID: 34801491 DOI: 10.1016/j.scitotenv.2021.151765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
With the goal of cost-effective and high-efficient microalgae-based biodiesel production, this study evaluated the feasibility of the joint strategy concerning myo-inositol (MI) and salinity stress on lipid productivity of Monoraphidium sp. QLY-1 in molasses wastewater (MW). The maximal lipid productivity (147.79 mg L-1 d-1) was obtained under combined 0.5 g L-1 MI and 10 g L-1 NaCl treatment, which was 1.40-fold higher than the control. Meanwhile, the nutrients removal from MW was markedly increased under MI-NaCl treatment. Moreover, exogenous MI upregulated key lipogenic genes' expressions, activated autophagic activity and ethylene (ET) signaling, and ultimately alleviated the salinity-induced damage via reactive oxygen species (ROS) signaling. Further pharmacologic experiment confirmed the indispensable role of ET in the lipogenesis progress under the combined treatment. These data demonstrated the combined salinity stress and MI treatment to be capable for lipid hyperproduction and wastewater nutrients removal, which contributes to practically integrating the microalgae cultivation with wastewater treatment.
Collapse
Affiliation(s)
- Tengsheng Qiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming 650217, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|