1
|
Liu X, Chen J, Du H, Liu Z, Du H, Rashid A, Wang Y, Ma W, Wang S. Resolving the dynamics of chrysolaminarin regulation in a marine diatom: A physiological and transcriptomic study. Int J Biol Macromol 2023; 252:126361. [PMID: 37591430 DOI: 10.1016/j.ijbiomac.2023.126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Diatom containing different active biological macromolecules are thought to be an excellent microbial cell factory. Phaeodactylum tricornutum, a model diatom, is a superb chassis organism accumulating chrysolaminarin with important bioactivities. However, the characteristic of chrysolaminarin accumulation and molecular mechanism of the fluctuated chrysolaminarin in diatom are still unknown. In this study, physiological data and transcriptomic analysis were carried out to clarify the mechanism involved in chrysolaminarin fluctuation. The results showed that chrysolaminarin content fluctuated, from 7.41 % dry weight (DW) to 40.01 % DW during one light/dark cycle, increase by day and decrease by night. The similar fluctuated characteristic was also observed in neutral lipid content. Genes related to the biosynthesis of chrysolaminarin and neutral lipid were up-regulated at the beginning of light-phase, explaining the accumulation of these biological macromolecules. Furthermore, genes involved in carbohydrate degradation, cell cycle, DNA replication and mitochondria-localized β-oxidation were up-regulated at the end of light phase and at the beginning of dark phase hinting an energy transition of carbohydrate to cell division during the dark period. Totally, our findings provide important information for the regulatory mechanism in the diurnal fluctuation of chrysolaminarin. It would also be of great help for the mass production of economical chrysolaminarin in marine diatom.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Jichen Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China.
| | - Zidong Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Hua Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Yuwen Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Wanying Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou 515063, Guangdong, China
| |
Collapse
|
2
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|