1
|
Ren H, Zhou D, Lu J, Show PL, Sun FF. Mapping the field of microalgae CO 2 sequestration: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27850-0. [PMID: 37311860 DOI: 10.1007/s11356-023-27850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Microalgae CO2 sequestration has gained considerable attention in the last three decades as a promising technology to slow global warming caused by CO2 emissions. To provide a comprehensive and objective analysis of the research status, hot spots, and frontiers of CO2 fixation by microalgae, a bibliometric approach was recently chosen for review. In this study, 1561 articles (1991-2022) from the Web of Science (WOS) on microalgae CO2 sequestration were screened. A knowledge map of the domain was presented using VOSviewer and CiteSpace. It visually demonstrates the most productive journals (Bioresource Technology), countries (China and USA), funding sources, and top contributors (Cheng J, Chang JS, and their team) in the field of CO2 sequestration by microalgae. The analysis also revealed that research hotspots changed over time and that recent research has focused heavily on improving carbon sequestration efficiency. Finally, commercialization of carbon fixation by microalgae is a key hurdle, and supports from other disciplines could improve carbon sequestration efficiency.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China.
| | - Duan Zhou
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Jiawen Lu
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Oliveira CYB, Abreu JL, Santos EP, Matos ÂP, Tribuzi G, Oliveira CDL, Veras BO, Bezerra RS, Müller MN, Gálvez AO. Light induces peridinin and docosahexaenoic acid accumulation in the dinoflagellate Durusdinium glynnii. Appl Microbiol Biotechnol 2022; 106:6263-6276. [PMID: 35972515 DOI: 10.1007/s00253-022-12131-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil.
| | - Jéssika L Abreu
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Elizabeth P Santos
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Ângelo P Matos
- Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Giustino Tribuzi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, 88034-801, Brazil
| | - Cicero Diogo L Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Bruno O Veras
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Railson S Bezerra
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Marius N Müller
- Department of Oceanography, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Alfredo O Gálvez
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| |
Collapse
|
3
|
Iwasaki K, Szabó M, Tamburic B, Evenhuis C, Zavafer A, Kuzhiumparambil U, Ralph P. Investigating the impact of light quality on macromolecular composition of Chaetoceros muelleri. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:554-564. [PMID: 34635201 DOI: 10.1071/fp21131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.
Collapse
Affiliation(s)
- Kenji Iwasaki
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Milán Szabó
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Institute of Plant Biology, Biological Research Centre, Hungary, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bojan Tamburic
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW, Australia
| | - Christian Evenhuis
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Alonso Zavafer
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Peter Ralph
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
4
|
Cultivation of Microalgae in Unsterile Malting Effluent for Biomass Production and Lipid Productivity Improvement. FERMENTATION 2022. [DOI: 10.3390/fermentation8040186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microalgae have the potential to grow in nutrient-rich environments and have the ability to accumulate nutrients from wastewater. The nutrients in malting wastewater are ideal for microalgae cultivation. However, there is limited published work on the growth characteristics of freshwater microalgae grown in malting effluent. This study examined the potential of diluted malting effluent for the growth of freshwater green algae Chlorella sp. and Chlamydomonas sp. isolated from northern Ontario and subsequent biomass and lipid production. Under the 18:6 h light/dark cultivation cycle, the highest cell number counted (540 × 104 cell·mL−1 on day 20) and total chlorophyll content were found in 50% diluted malting effluents for Chlorella sp., whereas the 70% dilution concentration was the most productive for Chlamydomonas (386 × 104 cell·mL−1 on day 16). The total lipid content was higher in the 50% dilution concentration of malting effluent in both Chlorella sp. (maximum 20.5%–minimum 11.5% of dry weight) and Chlamydomonas sp. (max 39.3%–min 25.9% of dry weight). These results emphasize the suitability of using unsterile diluted malting effluent for microalgae cultivation.
Collapse
|
5
|
Zavřel T, Schoffman H, Lukeš M, Fedorko J, Keren N, Červený J. Monitoring fitness and productivity in cyanobacteria batch cultures. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|