1
|
Liao Y, Fatehi P, Liao B. Microalgae cell adhesions on hydrophobic membrane substrates using quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 2023; 230:113514. [PMID: 37598610 DOI: 10.1016/j.colsurfb.2023.113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Microalgal cell adhesion and biofilm formation are affected by interactions between microalgae strains and membrane materials. Variations of surface properties of microalgae and membrane materials are expected to affect cell-membranes and cell-cell interactions and thus initial microalgal cell adhesion and biofilm formation rates. Hence, it should be possible to identify the dominant mechanisms controlling microalgal cell adhesion and biofilm formation. The effects of surface properties of three different microalgal strains and three different types of membrane materials on microalgal cell adhesion and biofilm formation were systematically investigated in real time by monitoring changes in the oscillation frequency and dissipation of the quartz crystal resonator (QCM-D). The results revealed that in general a higher surface free energy, more negative zeta potential, and higher surface roughness of membrane materials positively correlated with a larger quantity of microalgae cell deposition, while a more hydrophilic microalgae with a larger negative zeta potential preferred to attach to a more hydrophobic membrane material. The adhered microalgal layers exhibited viscoelastic properties. The relative importance of these mechanisms in controlling microalgae cell attachment and biofilm formation might vary, depending on the properties of specific microalgae species and hydrophobic membrane materials used.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
2
|
Bisht B, Verma M, Sharma R, Chauhan P, Pant K, Kim H, Vlaskin MS, Kumar V. Development of yeast and microalgae consortium biofilm growth system for biofuel production. Heliyon 2023; 9:e19353. [PMID: 37662773 PMCID: PMC10472003 DOI: 10.1016/j.heliyon.2023.e19353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The current study aimed to develop a laboratory-scale biofilm photobioreactor system for biofuel production. Scope & Approach During the investigation, Jute was discovered to be the best, cheap, hairy, open-pored supporting material for biofilm formation. Microalgae & yeast consortium was used in this study for biofilm formation. Conclusion The study identified microalgae and yeast consortium as a promising choice and ideal partners for biofilm formation with the highest biomass yield (47.63 ± 0.93 g/m2), biomass productivity (4.39 ± 0.29 to 7.77 ± 0.05 g/m2/day) and lipid content (36%) over 28 days cultivation period, resulting in a more sustainable and environmentally benign fuel that could become a reality in the near future.
Collapse
Affiliation(s)
- Bhawna Bisht
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Monu Verma
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Rohit Sharma
- Department of Biotechnology Engineering, University Institute of Engineering, Chandigarh University, Chandigarh, India
| | - P.K. Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, HP, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Mikhail S. Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow, 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
- Peoples’ Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation
- Graphic Era Hill University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
3
|
Liao Y, Fatehi P, Liao B. Surface properties of membrane materials and their role in cell adhesion and biofilm formation of microalgae. BIOFOULING 2023; 39:879-895. [PMID: 37965865 DOI: 10.1080/08927014.2023.2280005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, the effects of surface properties of membrane materials on microalgae cell adhesion and biofilm formation were investigated using Chlorella vulgaris and five different types of membrane materials under hydrodynamic conditions. The results suggest that the contact angle (hydrophobicity), surface free energy, and free energy of cohesion of membrane materials alone could not sufficiently elucidate the selectivity of microalgae cell adhesion and biofilm formation on membrane materials surfaces, and membrane surface roughness played a dominant role in controlling biofilm formation rate, under tested hydrodynamic conditions. A lower level of biofilm EPS production was generally associated with a larger amount of biofilm formation. The zeta potential of membrane materials could enhance initial microalgae cell adhesion and biofilm formation through salt bridging or charge neutralization mechanisms.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
4
|
Chen G, Hu Z, Ebrahimi A, Johnson DR, Wu F, Sun Y, Shen R, Liu L, Wang G. Chemotactic movement and zeta potential dominate Chlamydomonas microsphaera attachment and biocathode development. ENVIRONMENTAL TECHNOLOGY 2023; 44:1838-1849. [PMID: 34859742 DOI: 10.1080/09593330.2021.2014575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Microalgal cell attaching and biofilm formation are critical in the application of microalgal biocathode, which severs as one of the hopeful candidates to an original cathode in bioelectrochemical systems. Many efforts have been put in biofilm formation and bioelectrochemical systems for years, but the predominant factors shaping microalgal biocathode formation are sketchy. We launched a pair of researches to investigate microalgal attachment and biofilm formation in the presence/absence of applied voltages using Chlamydomonas microsphaera as a model unicellular motile microalga. In this study, we presented how microalga attached and biofilm formed on a carbon felt surface without applied voltages and try to manifest the most important aspects in this process. Results showed that while nutrient sources did not directly regulate cell attachment onto the carbon felt, limited initial nutrient concentration nevertheless promoted cell attachment. Specifically, nutrient availability did not influence the early stage (20-60 min) of microalgal cell attachment but did significantly impact cell attachment during later stages (240-720 min). Further analysis revealed that nutrient availability-mediated chemotactic movements and zeta potential are crucial to facilitate the initial attachment and subsequent biofilm formation of C. microsphaera onto the surfaces, serving as an important factor controlling microalgal surface attachment. Our results demonstrate that nutrient availability is a dominant factor controlling microalgal surface attachment and subsequent biofilm formation processes. This study provides a mechanistic understanding of microalgal surface attachment and biofilm formation processes on carbon felts surfaces in the absence of applied voltages.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Zhen Hu
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Fazhu Wu
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yifei Sun
- Department of Soil and Water Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Renhao Shen
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Li Liu
- Department of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Li L, Zhao D, Zhou W, Chen L, Su G, Zhang Z, Liu T. Surface patterns of mortar plates influence Spirulina platensis biofilm attached cultivation: Experiment and modeling. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Rawindran H, Syed R, Alangari A, Khoo KS, Lim JW, Sahrin NT, Suparmaniam U, Raksasat R, Liew CS, Leong WH, Kiatkittipong W, Shahid MK, Hara H, Shaharun MS. Mechanistic behaviour of Chlorella vulgaris biofilm formation onto waste organic solid support used to treat palm kernel expeller in the recent Anthropocene. ENVIRONMENTAL RESEARCH 2023; 222:115352. [PMID: 36716802 DOI: 10.1016/j.envres.2023.115352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The capacity to maximize the proliferation of microalgal cells by means of topologically textured organic solid surfaces under various pH gave rise to the fundamental biophysical analysis of cell-surface attachment in this study. The substrate used in analysis was palm kernel expeller (PKE) in which the microalgal cells had adhered onto its surface. The findings elucidated the relevance of surface properties in terms of surface wettability and surface energy in relation to the attached microalgal growth with pH as the limiting factor. The increase in hydrophobicity of PKE-microalgae attachment was able to facilitate the formation of biofilm better. The pH 5 and pH 11 were found to be the conditions with highest and lowest microalgal growths, respectively, which were in tandem with the highest contact angle value at pH 5 and conversely for pH 11. The work of attachment (Wcs) had supported the derived model with positive values being attained for all the pH conditions, corroborating the thermodynamic feasibility. Finally, this study had unveiled the mechanism of microalgal attachment onto the surface of PKE using the aid of extracellular polymeric surfaces (EPS) from microalgae. Also, the hydrophobic nature of PKE enabled excellent attachment alongside with nutrients for microalgae to grow and from layer-by-layer (LbL) assembly. This assembly was then isolated using organosolv method by means of biphasic solvents, namely, methanol and chloroform, to induce detachment.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alangari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India.
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Uganeeswary Suparmaniam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Ratchaprapa Raksasat
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon, 34134, Republic of Korea
| | - Hirofumi Hara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Tokyo 113-8657, Japan
| | - Maizatul Shima Shaharun
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
7
|
Koopmann IK, Müller BA, Labes A. Screening of a Thraustochytrid Strain Collection for Carotenoid and Squalene Production Characterized by Cluster Analysis, Comparison of 18S rRNA Gene Sequences, Growth Behavior, and Morphology. Mar Drugs 2023; 21:204. [PMID: 37103341 PMCID: PMC10140983 DOI: 10.3390/md21040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Carotenoids and squalene are important terpenes that are applied in a wide range of products in foods and cosmetics. Thraustochytrids might be used as alternative production organisms to improve production processes, but the taxon is rarely studied. A screening of 62 strains of thraustochytrids sensu lato for their potential to produce carotenoids and squalene was performed. A phylogenetic tree was built based on 18S rRNA gene sequences for taxonomic classification, revealing eight different clades of thraustochytrids. Design of experiments (DoE) and growth models identified high amounts of glucose (up to 60 g/L) and yeast extract (up to 15 g/L) as important factors for most of the strains. Squalene and carotenoid production was studied by UHPLC-PDA-MS measurements. Cluster analysis of the carotenoid composition partially mirrored the phylogenetic results, indicating a possible use for chemotaxonomy. Strains in five clades produced carotenoids. Squalene was found in all analyzed strains. Carotenoid and squalene synthesis was dependent on the strain, medium composition and solidity. Strains related to Thraustochytrium aureum and Thraustochytriidae sp. are promising candidates for carotenoid synthesis. Strains closely related to Schizochytrium aggregatum might be suitable for squalene production. Thraustochytrium striatum might be a good compromise for the production of both molecule groups.
Collapse
Affiliation(s)
- Inga K Koopmann
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| | - Bettina A Müller
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| | - Antje Labes
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| |
Collapse
|
8
|
Wang Y, Zhang X, Guan L, Jiang Z, Gao X, Hao S, Zhang X. A novel method to harvest microalgae biofilms by interfacial interaction. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Tiong ZW, Rawindran H, Leong WH, Liew CS, Wong YY, Kiatkittipong W, Abdelfattah EA, Show PL, Rahmah AU, Tong WY, Lim JW. Impact of Various Visible Spectra on Attached Microalgal Growth on Palm Decanter Cake in Triggering Protein, Carbohydrate, and Lipid to Biodiesel Production. Processes (Basel) 2022; 10:1583. [DOI: 10.3390/pr10081583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Attached microalgal growth of Chlorella vulgaris on palm decanter cake (PDC) under irradiation with various visible monochromatic and polychromatic spectra to produce biodiesel was studied in this work. The results demonstrated that the white spectrum cultivation exhibited the highest microalgal density of 1.13 g/g along with 1.213 g/L day of microalgal productivity. Correspondingly, the biodiesel obtained was comprised mainly of C16 and C18 fatty acids, possessing a high cetane number and oxidation stability from the high saturated fatty acid content (70.38%), which was appealing in terms of most biodiesel production requirements. Nevertheless, the highest lipid content (14.341%) and lipid productivity (93.428 mg/L per day) were discovered with green spectrum cultivation. Blue and white spectra led to similar protein contents (34%) as well as carbohydrate contents (61%), corroborating PDC as a feasible carbon and nutrient source for growing microalgae. Lastly, the energy feasibilities of growing the attached microalgae under visible spectra were investigated, with the highest net energy ratio (NER) of 0.302 found for the yellow spectrum. This value outweighed that in many other works which have used suspended growth systems to produce microalgal fuel feedstock. The microalgal growth attached to PDC is deemed to be a suitable alternative cultivation mode for producing sustainable microalgal feedstock for the biofuel industry.
Collapse
|
10
|
You X, Yang L, Zhou X, Zhang Y. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. ENVIRONMENTAL RESEARCH 2022; 209:112860. [PMID: 35123965 DOI: 10.1016/j.envres.2022.112860] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
As the global economy develops and the population increases, greenhouse gas emissions and wastewater discharge have become inevitable global problems. Conventional wastewater treatment processes produce direct or indirect greenhouse gas, which can intensify global warming. Microalgae-based wastewater treatment technology can not only purify wastewater and use the nutrients in wastewater to produce microalgae biomass, but it can also absorb CO2 in the atmosphere or flue gas through photosynthesis, which demonstrates great potential as a sustainable and economical wastewater treatment technology. This review highlights the multifaceted roles of microalgae in different types of wastewater treatment processes in terms of the extent of their bioremediation function and microalgae biomass production. In addition, various newly developed microalgae cultivation systems, especially biofilm cultivation systems, were further characterized systematically. The performance of different microalgae cultivation systems was studied and summarized. Current research on the technical approaches for the modification of the CO2 capture by microalgae and the maximization of CO2 transfer and conversion efficiency were also reviewed. This review serves as a useful and informative reference for the application of wastewater treatment and CO2 capture by microalgae, aiming to provide a reference for the realization of carbon neutrality in wastewater treatment systems.
Collapse
Affiliation(s)
- Xiaogang You
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| | - Libin Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China.
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| |
Collapse
|
11
|
Tong CY, Derek CJC. A Methodological Review on the Characterization of Microalgal Biofilm and Its Extracellular Polymeric Substances. J Appl Microbiol 2022; 132:3490-3514. [DOI: 10.1111/jam.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- C. Y. Tong
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| | - C. J. C Derek
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| |
Collapse
|
12
|
Wang YN, Pang H, Yu C, Li C, Wang JH, Chi ZY, Xu YP, Li SY, Zhang Q, Che J. Growth and nutrients removal characteristics of attached Chlorella sp. using synthetic municipal secondary effluent with varied hydraulic retention times and biomass harvest intervals. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|