1
|
Ji Z, Ma W, Liang P, Wang X, Zhang S, Han Y, Guo Y. Anti-inflammatory potential of mycoprotein peptides obtained from fermentation of Schizophyllum commune DS1 with young apples. Int J Biol Macromol 2024; 281:136638. [PMID: 39419141 DOI: 10.1016/j.ijbiomac.2024.136638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Fermenting edible filamentous fungi with food industry by-products, such as young apples, shows promise for producing mycoproteins and functional peptides. This study aimed to evaluate the production of mycoprotein by fermenting different edible-grade filamentous fungi using young apples as a substrate. Schizophyllum commune DS1 (DS1) demonstrated significant potential for generating mycoprotein, yielding 33.56 ± 0.82 %. From the hydrolysis of DS1 mycoprotein, three polypeptides were identified with the capacity of inhibiting nitric oxide synthase (iNOS): DNIQGITKPAIR (DR12), SDNAFGGR (SR8), and ASDPSGF (AF7). Computational analysis, including bioinformatics and molecular docking, indicated their high affinity for inhibiting iNOS, with binding energies of -452.8157 kcal/mol, -388.0222 kcal/mol, and -323.8843 kcal/mol, respectively. This binding was facilitated through various interactions such as electrostatic forces, π-π interactions, hydrogen bonds, and non-covalent interactions, resulting in potential anti-inflammatory properties. Furthermore, cell experiments using RAW264.7 macrophages demonstrated that these peptides effectively suppressed nitric oxide production in a dose-dependent manner. Additionally, they reduced the production of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), inducible iNOS, and cell apoptosis. In conclusion, this study presents a novel approach for developing plant-based mycoproteins and a new source for discovering food-derived bioactive peptides.
Collapse
Affiliation(s)
- Zhengmei Ji
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Wenjun Ma
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Pengfei Liang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Shuai Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Yanhui Han
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| | - Yurong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| |
Collapse
|
2
|
Banks M, Taylor M, Guo M. High throughput parameter estimation and uncertainty analysis applied to the production of mycoprotein from synthetic lignocellulosic hydrolysates. Curr Res Food Sci 2024; 9:100908. [PMID: 39555020 PMCID: PMC11565039 DOI: 10.1016/j.crfs.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
The current global food system produces substantial waste and carbon emissions while exacerbating the effects of global hunger and protein deficiency. This study aims to address these challenges by exploring the use of lignocellulosic agricultural residues as feedstocks for microbial protein fermentation, focusing on Fusarium venenatum A3/5, a mycelial strain known for its high protein yield and nutritional quality. We propose a high throughput microlitre batch fermentation system paired with analytical chemistry to generate time series data of microbial growth and substrate utilisation. An unstructured biokinetic model was developed using a bootstrap sampling approach to quantify uncertainty in the parameter estimates. The model was validated against an independent data set of a different glucose-xylose composition to assess the predictive performance. Our results indicate a robust model fit with high coefficients of determination and low root mean squared errors for biomass, glucose, and xylose concentrations. Estimated parameter values provided insights into the resource utilisation strategies of Fusarium venenatum A3/5 in mixed substrate cultures, aligning well with previous research findings. Significant correlations between estimated parameters were observed, highlighting challenges in parameter identifiability. The high throughput workflow presents a novel, rapid methodology for biokinetic model development, enabling efficient exploration of microbial growth dynamics and substrate utilisation. This innovative method directly supports the development of a foundational model for optimising microbial protein production from lignocellulosic hydrolysates, contributing to a more sustainable global food system.
Collapse
Affiliation(s)
- Mason Banks
- Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Mark Taylor
- Fermentation Lead, Marlow Ingredients, Nelson Ave, Billingham, North Yorkshire, TS23 4HA, United Kingdom
| | - Miao Guo
- Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom
| |
Collapse
|
3
|
Li YP, Ahmadi F, Kariman K, Lackner M. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. NPJ Sci Food 2024; 8:66. [PMID: 39294139 PMCID: PMC11410949 DOI: 10.1038/s41538-024-00299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024] Open
Abstract
The global population is increasing, with a predicted demand for 1250 million tonnes of animal-derived protein by 2050, which will be difficult to meet. Single-cell protein (SCP) offers a sustainable solution. This review covers SCP production mechanisms, microbial and substrate choices, and advancements in metabolic engineering and CRISPR-Cas. It emphasizes second-generation substrates and fermentation for a circular economy. Despite challenges like high nucleic acid content, SCP promises to solve the global nutrition problem.
Collapse
Affiliation(s)
- Yu Pin Li
- College of Agricultural Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China.
| | - Fatemeh Ahmadi
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - Khalil Kariman
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | | |
Collapse
|
4
|
Landeta C, Medina-Ortiz D, Escobar N, Valdez I, González-Troncoso MP, Álvares-Saravia D, Aldridge J, Gómez C, Lienqueo ME. Integrative workflows for the characterization of hydrophobin and cerato-platanin in the marine fungus Paradendryphiella salina. Arch Microbiol 2024; 206:385. [PMID: 39177836 DOI: 10.1007/s00203-024-04087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
Hydrophobins (HFBs) and cerato-platanins (CPs) are surface-active extracellular proteins produced by filamentous fungi. This study identified two HFB genes (pshyd1 and pshyd2) and one CP gene (pscp) in the marine fungus Paradendryphiella salina. The proteins PsCP, PsHYD2, and PsHYD1 had molecular weights of 12.70, 6.62, and 5.98 kDa, respectively, with isoelectric points below 7. PsHYD1 and PsHYD2 showed hydrophobicity (GRAVY score 0.462), while PsCP was hydrophilic (GRAVY score - 0.202). Stability indices indicated in-solution stability. Mass spectrometry identified 2,922 proteins, including CP but not HFB proteins. qPCR revealed differential gene expression influenced by developmental stage and substrate, with pshyd1 consistently expressed. These findings suggest P. salina's adaptation to marine ecosystems with fewer hydrophobin genes than other fungi but capable of producing surface-active proteins from seaweed carbohydrates. These proteins have potential applications in medical biocoatings, food industry foam stabilizers, and environmental bioremediation.
Collapse
Affiliation(s)
- Catalina Landeta
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - David Medina-Ortiz
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Natalia Escobar
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Iván Valdez
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - María Paz González-Troncoso
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - Diego Álvares-Saravia
- Teaching and Research Assistance Center, CADI, University of Magallanes, Av. los Flamencos, Punta Arenas, 01364, Chile
| | - Jacqueline Aldridge
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Carlos Gómez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Chile
| | - María Elena Lienqueo
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile.
| |
Collapse
|
5
|
Landeta-Salgado C, Salas-Wallach N, Munizaga J, González-Troncoso MP, Burgos-Díaz C, Araújo-Caldas L, Sartorelli P, Martínez I, Lienqueo ME. Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp. Foods 2024; 13:2376. [PMID: 39123566 PMCID: PMC11312218 DOI: 10.3390/foods13152376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach was employed to screen metabolites and annotate molecules with nutraceutical properties. Two products, each representing a distinct consortia of co-cultured fungi, named Myco 1 and Myco 2, were analysed in this study. These consortia demonstrated superior properties compared to those of Durvillaea spp., showing significant increases in total protein (~238%), amino acids (~219%), and β-D-glucans (~112%). The protein contains all essential amino acids, a low fatty acid content, and exhibits high antioxidant activity (21.5-25.5 µmol TE/g). Additionally, Myco 2 exhibited the highest anti-alpha-glucosidase activity (IC50 = 16.5 mg/mL), and Myco 1 exhibited notable anti-lipase activity (IC50 = 10.5 mg/mL). Among the 69 top differentially abundant metabolites screened, 8 nutraceutical compounds were present in relatively high concentrations among the identified mycoproteins. The proteins and polysaccharides in the mycoprotein may play a crucial role in the formation and stabilization of emulsions, identifying it as a potent bioemulsifier. In conclusion, the bioconversion of Durvillaea spp. results in a mycoprotein with high-quality protein, significant nutritional and functional value, and prebiotic and nutraceutical potential due to the production of unique bioactive compounds.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Nicolás Salas-Wallach
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile;
| | - Lhaís Araújo-Caldas
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Patricia Sartorelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Irene Martínez
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| |
Collapse
|
6
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
7
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
8
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
9
|
Lee SY, Lee DY, Jeong JW, Kim JH, Yun SH, Mariano E, Lee J, Park S, Jo C, Hur SJ. Current technologies, regulation, and future perspective of animal product analogs - A review. Anim Biosci 2023; 36:1465-1487. [PMID: 37170512 PMCID: PMC10475384 DOI: 10.5713/ab.23.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
The purpose of this study was to investigate the recent development of meat analog, industrialization, and the related legal changes worldwide. Summarizing the current status of the industrialization of meat analog, studies on plant-based meat, mycoprotein, and edible insects were mainly conducted to investigate their sensory properties (texture, taste, flavor, and color resembling meat), nutritional and safety evaluations, acquisition method of meat alternatives, and commercialization. Cultured meat is mainly studied for developing muscle satellite cell acquisition and support techniques or materials for the formation of structures. However, these technologies have not reached the level for active industrialization. Even though there are differences in the food categories and labeling between countries, it is common to cause confusion or to relay false information to consumers; therefore, it is important to provide accurate information. In this study, there were some differences in the food classification and food definition (labeling) contents for each country and state depending on the product shape or form, raw materials, and ingredients. Therefore, this study can provide information about the current research available on meat alternatives, improve regulation, and clarify laws related to the meat analog industry, which can potentially grow alongside the livestock industry.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006,
Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
10
|
Vega-Gálvez A, Uribe E, Gómez-Pérez LS, García V, Mejias N, Pastén A. Drying Kinetic Modeling and Assessment of Mineral Content, Antimicrobial Activity, and Potential α-Glucosidase Activity Inhibition of a Green Seaweed ( Ulva spp.) Subjected to Different Drying Methods. ACS OMEGA 2022; 7:34230-34238. [PMID: 36188277 PMCID: PMC9520681 DOI: 10.1021/acsomega.2c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The green algal genus Ulva grows widely on all continents and is used for several applications such as functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals due to its nutritional characteristics. However, to increase its shelf-life and retain its bioactive components, it is necessary to apply some conservation technology, such as drying. The aim of this work is to describe the drying kinetic behavior of the green seaweed Ulva spp. by applying three dehydration methods: convective drying (CD), vacuum drying (VD), and solar drying (SD) by mathematical modeling and determining the retention of mineral content by atomic absorption spectroscopy and the antimicrobial potential against four strains such as Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae, and Penicillium sp. by measurement of inhibition zones and α-glucosidase activity inhibition, as reported by IC50 determination. A freeze-dried sample was used as the control. The equilibrium moisture values calculated using the Guggenheim-Anderson-de Boer model were 0.0108, 0.0108, and 0.0290 g water/g d.m., for CD, VD and SD, respectively. The Midilli and Kucuk model showed robustness to fit all the experimental data of drying kinetic modeling. Ulva spp. is an important source of potassium with a ratio of Na/K < 0.29. Inhibition halos were observed in all samples against S. cerevisiae and Penicillium sp. with higher values than fluconazole action. An inhibitory effect on α-glucosidase activity was observed in all samples, mainly in the freeze-dried sample. Finally, dried Ulva spp. is a rich source of macro- and microminerals with antimicrobial activity and is a potential α-glucosidase inhibitor. Thus, it can be considered as a potential functional ingredient for food manufacturing.
Collapse
Affiliation(s)
- Antonio Vega-Gálvez
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Elsa Uribe
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
- Instituto
de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gómez-Pérez
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Vivian García
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Nicol Mejias
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Alexis Pastén
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| |
Collapse
|
11
|
Isolation and Characterization of a Novel Hydrophobin, Sa-HFB1, with Antifungal Activity from an Alkaliphilic Fungus, Sodiomyces alkalinus. J Fungi (Basel) 2022; 8:jof8070659. [PMID: 35887416 PMCID: PMC9322931 DOI: 10.3390/jof8070659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The adaptations that alkaliphilic microorganisms have developed due to their extreme habitats promote the production of active natural compounds with the potential to control microorganisms, causing infections associated with healthcare. The primary purpose of this study was to isolate and identify a hydrophobin, Sa-HFB1, from an alkaliphilic fungus, Sodiomyces alkalinus. A potential antifungal effect against pathogenic and opportunistic fungi strains was determined. The MICs of Sa-HFB1 against opportunistic and clinical fungi ranged from 1 to 8 µg/mL and confirmed its higher activity against both non- and clinical isolates. The highest level of antifungal activity (MIC 1 µg/mL) was demonstrated for the clinical isolate Cryptococcus neoformans 297 m. The hydrophobin Sa-HFB1 may be partly responsible for the reported antifungal activity of S. alkalinus, and may serve as a potential source of lead compounds, meaning that it can be developed as an antifungal drug candidate.
Collapse
|
12
|
Pérez-Alva A, MacIntosh A, Baigts-Allende D, García-Torres R, Ramírez-Rodrigues M. Fermentation of algae to enhance their bioactive activity: A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
A review on mycoprotein: History, nutritional composition, production methods, and health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Valorization of the green seaweed Ulva rigida for production of fungal biomass protein using a hypercellulolytic terrestrial fungus. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Reboleira J, Silva S, Chatzifragkou A, Niranjan K, Lemos MF. Seaweed fermentation within the fields of food and natural products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Landeta-Salgado C, Cicatiello P, Stanzione I, Medina D, Berlanga Mora I, Gomez C, Lienqueo ME. The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiol Res 2021; 251:126835. [PMID: 34399103 DOI: 10.1016/j.micres.2021.126835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
The marine fungi Paradendryphiela salina and Talaromyces pinophilus degrade and assimilate complex substrates from plants and seaweed. Additionally, these fungi secrete surface-active proteins, identified as cerato-platanins and hydrophobins. These hydrophobic proteins have the ability to self-assemble forming amyloid-like aggregates and play an essential role in the growth and development of the filamentous fungi. It is the first time that one cerato-platanin (CP) is identified and isolated from P. salina (PsCP) and two Class I hydrophobins (HFBs) from T. pinophilus (TpHYD1 and TpHYD2). Furthermore, it is possible to extract cerato-platanins and hydrophobins using marine fungi that can feed on seaweed biomass, and through a submerged liquid fermentation process. The propensity to aggregate of these proteins has been analyzed using different techniques such as Thioflavin T fluorescence assay, Fourier-transform Infrared Spectroscopy, and Atomic Force Microscopy. Here, we show that the formation of aggregates of PsCP and TpHYD, was influenced by the carbon source from seaweed. This study highlighted the potential of these self-assembling proteins generated from a fermentation process with marine fungi and with promising properties such as conformational plasticity with extensive applications in biotechnology, pharmacy, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - David Medina
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Isadora Berlanga Mora
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile
| | - Carlos Gomez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Colombia
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile.
| |
Collapse
|