1
|
Song Y, Wang F, Chen L, Zhang W. Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives. Mar Drugs 2024; 22:216. [PMID: 38786607 PMCID: PMC11122798 DOI: 10.3390/md22050216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.
Collapse
Affiliation(s)
- Yanhui Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Ye Y, Liu M, Yu L, Sun H, Liu J. Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar Drugs 2024; 22:54. [PMID: 38393025 PMCID: PMC10890015 DOI: 10.3390/md22020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the escalating global energy crisis, microalgae have emerged as highly promising producers of biofuel and high-value products. Among these microalgae, Nannochloropsis has received significant attention due to its capacity to generate not only triacylglycerol (TAG) but also eicosapentaenoic acid (EPA) and valuable carotenoids. Recent advancements in genetic tools and the field of synthetic biology have revolutionized Nannochloropsis into a powerful biofactory. This comprehensive review provides an initial overview of the current state of cultivation and utilization of the Nannochloropsis genus. Subsequently, our review examines the metabolic pathways governing lipids and carotenoids, emphasizing strategies to enhance oil production and optimize carbon flux redirection toward target products. Additionally, we summarize the utilization of advanced genetic manipulation techniques in Nannochloropsis. Together, the insights presented in this review highlight the immense potential of Nannochloropsis as a valuable model for biofuels and synthetic biology. By effectively integrating genetic tools and metabolic engineering, the realization of this potential becomes increasingly feasible.
Collapse
Affiliation(s)
- Ying Ye
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Sun Y, Xin Y, Zhang L, Wang Y, Liu R, Li X, Zhou C, Zhang L, Han J. Enhancement of violaxanthin accumulation in Nannochloropsis oceanica by overexpressing a carotenoid isomerase gene from Phaeodactylum tricornutum. Front Microbiol 2022; 13:942883. [PMID: 36118188 PMCID: PMC9471142 DOI: 10.3389/fmicb.2022.942883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Nannochloropsis has been considered as a promising feedstock for the industrial production of violaxanthin. However, a rational breeding strategy for the enhancement of violaxanthin content in this microalga is still vacant, thereby limiting its industrial application. All-trans-lycopene locates in the first branch point of carotenogenesis. The carotenoid isomerase (CRTISO), catalyzing the lycopene formation, is thus regarded as a key enzyme for carotenogenesis. Phaeodactylum tricornutum can accumulate high-level carotenoids under optimal conditions. Therefore, it is feasible to improve violaxanthin level in Nannochloropsis by overexpression of PtCRTISO. Protein targeting analysis of seven PtCRTISO candidates (PtCRTISO1–6 and PtCRTISO-like) demonstrated that PtCRTISO4 was most likely the carotenoid isomerase of P. tricornutum. Moreover, the transcriptional pattern of PtCRTISO4 at different cultivation periods was quite similar to other known carotenogenesis genes. Thus, PtCRTISO4 was transformed into N. oceanica. Compared to the wild type (WT), all three transgenic lines (T1–T3) of N. oceanica exhibited higher levels of total carotenoid and violaxanthin. Notably, T3 exhibited the peak violaxanthin content of 4.48 mg g–1 dry cell weight (DCW), which was 1.68-folds higher than WT. Interestingly, qRT-polymerase chain reaction (PCR) results demonstrated that phytoene synthase (NoPSY) rather than ζ-carotene desaturase (NoZDS) and lycopene β-cyclase (NoLCYB) exhibited the highest upregulation, suggesting that PtCRTISO4 played an additional regulatory role in terms of carotenoid accumulation. Moreover, PtCRTISO4 overexpression increased C18:1n-9 but decreased C16:1n-7, implying that C18:1 may serve as a main feedstock for xanthophyll esterification in Nannochloropsis. Our results will provide valuable information for the violaxanthin production from Nannochloropsis.
Collapse
Affiliation(s)
- Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yi Xin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Luyao Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ying Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ruolan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education of China, School of Marine Science, Ningbo University, Ningbo, China
- *Correspondence: Lin Zhang,
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Jichang Han,
| |
Collapse
|