1
|
Boccato E, Petruzzellis F, Bordenave CD, Nardini A, Tretiach M, Mayr S, Candotto Carniel F. The sound of lichens: ultrasonic acoustic emissions during desiccation question cavitation events in the hyphae. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6579-6592. [PMID: 39046305 DOI: 10.1093/jxb/erae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Lichens are a mutualistic symbiosis between a fungus and one or more photosynthetic partners. They are photosynthetically active during desiccation down to relative water contents (RWCs) as low as 30% (on dry mass). Experimental evidence suggests that during desiccation, the photobionts have a higher hydration level than the surrounding fungal pseudo-tissues. Explosive cavitation events in the hyphae might cause water movements towards the photobionts. This hypothesis was tested in two foliose lichens by measurements of ultrasonic acoustic emissions (UAEs), a method commonly used in vascular plants but never in lichens, and by measurements of PSII efficiency, water potential, and RWC. Thallus structural changes were characterized by low-temperature scanning electron microscopy. The thalli were silent between 380% and 30% RWCs, when explosive cavitation events should cause movements of liquid water. Nevertheless, the thalli emitted UAEs at ~5% RWC. Accordingly, the medullary hyphae were partially shrunken at ~15% RWC, whereas they were completely shrunken at <5% RWC. These results do not support the hypothesis of hyphal cavitation and suggest that the UAEs originate from structural changes at hyphal level. The shrinking of hyphae is proposed as an adaptation to avoid cell damage at very low RWCs.
Collapse
Affiliation(s)
- Enrico Boccato
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - César Daniel Bordenave
- Instituto 'Cavanilles' de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Fac. CC. Biológicas, Universitat de València, 46100 Burjassot, Valencia, Spain
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| |
Collapse
|
2
|
Wang Y, Li R, Wang D, Qian B, Bian Z, Wei J, Wei X, Xu JR. Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii. Nat Commun 2023; 14:6972. [PMID: 37914724 PMCID: PMC10620189 DOI: 10.1038/s41467-023-42675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Lichens are of great ecological importance but mechanisms regulating lichen symbiosis are not clear. Umbilicaria muhlenbergii is a lichen-forming fungus amenable to molecular manipulations and dimorphic. Here, we established conditions conducive to symbiotic interactions and lichen differentiation and showed the importance of UMP1 MAP kinase in lichen development. In the initial biofilm-like symbiotic complexes, algal cells were interwoven with pseudohyphae covered with extracellular matrix. After longer incubation, fungal-algal complexes further differentiated into primitive lichen thalli with a melanized cortex-like and pseudoparenchyma-like tissues containing photoactive algal cells. Mutants deleted of UMP1 were blocked in pseudohyphal growth and development of biofilm-like complexes and primitive lichens. Invasion of dividing mother cells that contributes to algal layer organization in lichens was not observed in the ump1 mutant. Overall, these results showed regulatory roles of UMP1 in symbiotic interactions and lichen development and suitability of U. muhlenbergii as a model for studying lichen symbiosis.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Rong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Diwen Wang
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ben Qian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuyun Bian
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Mechanism of enhanced production of triterpenoids in algal-fungal consortium. Bioprocess Biosyst Eng 2022; 45:1625-1633. [PMID: 35963944 DOI: 10.1007/s00449-022-02768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chlorella pyrenoidosa-Ganoderma lucidum symbiotic systems were constructed. The mechanism of enhanced production of triterpenoids in algal-fungal consortium by comparing the contents of triterpenoids in individual fungal systems and algal-fungal consortium systems was investigated. The production of triterpenoids in C. pyrenoidosa-G. lucidum consortium increased significantly (P < 0.05). The categories and relative abundances of metabolites in the individual systems and algal-fungal systems were measured and analyzed by metabonomic tests. There were 57 significant different metabolites (VIP > 1 and P < 0.05) including 12 downregulated metabolites and 45 upregulated metabolites were obtained. The significant enriched metabolic pathways (VIP > 1 and P < 0.05) of citrate cycle (TCA cycle), tyrosine metabolism, glycolysis, and terpenoid backbone biosynthesis in algal-fungal consortium were obtained. The relative abundances of important precursors of triterpenoids including mevalonic acid, lanosterol, and hydroquinone were 1.4 times, 1.7 times, and 2 times, respectively, in algal-fungal consortium than that in the individual fungal systems. The presence of C. pyrenoidosa in algal-fungal consortium promoted the biosynthesis of triterpenoids in G. lucidum.
Collapse
|
4
|
Trebouxia lynnae sp. nov. (Former Trebouxia sp. TR9): Biology and Biogeography of an Epitome Lichen Symbiotic Microalga. BIOLOGY 2022; 11:biology11081196. [PMID: 36009823 PMCID: PMC9405249 DOI: 10.3390/biology11081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022]
Abstract
Two microalgal species, Trebouxia jamesii and Trebouxia sp. TR9, were detected as the main photobionts coexisting in the thalli of the lichen Ramalina farinacea. Trebouxia sp. TR9 emerged as a new taxon in lichen symbioses and was successfully isolated and propagated in in vitro culture and thoroughly investigated. Several years of research have confirmed the taxon Trebouxia sp. TR9 to be a model/reference organism for studying mycobiont−photobiont association patterns in lichen symbioses. Trebouxia sp. TR9 is the first symbiotic, lichen-forming microalga for which an exhaustive characterization of cellular ultrastructure, physiological traits, genetic and genomic diversity is available. The cellular ultrastructure was studied by light, electron and confocal microscopy; physiological traits were studied as responses to different abiotic stresses. The genetic diversity was previously analyzed at both the nuclear and organelle levels by using chloroplast, mitochondrial, and nuclear genome data, and a multiplicity of phylogenetic analyses were carried out to study its intraspecific diversity at a biogeographical level and its specificity association patterns with the mycobiont. Here, Trebouxia sp. TR9 is formally described by applying an integrative taxonomic approach and is presented to science as Trebouxia lynnae, in honor of Lynn Margulis, who was the primary modern proponent for the significance of symbiosis in evolution. The complete set of analyses that were carried out for its characterization is provided.
Collapse
|
5
|
Arakawa S, Kanaseki T, Wagner R, Goodenough U. Ultrastructure of the foliose lichen Myelochroa leucotyliza and its solo fungal and algal (Trebouxia sp.) partners. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|