1
|
Figueira Garcia L, Gojkovic Z, Venuleo M, Guidi F, Portillo E. The Use of Chemical Flocculants and Chitosan as a Pre-Concentration Step in the Harvesting Process of Three Native Microalgae Species from the Canary Islands Cultivated Outdoors at the Pilot Scale. Microorganisms 2024; 12:2583. [PMID: 39770786 PMCID: PMC11677443 DOI: 10.3390/microorganisms12122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl3 and AlCl3 were tested on freshwater Chlorella sorokiniana and two marine algae, Dunaliella tertiolecta and Tetraselmis striata. A preliminary screening at the laboratory scale was performed to detect the most suitable doses of flocculants. On the basis of these results, selected doses were tested on the pilot scale, using the flocculants for a pre-concentration step and the centrifugation as a second step to confirm the effectiveness of flocculants in a realistic operational environment. The biomass recoveries (Rpilot, %) of 100 L cultures were as follows: (1) for T. striata, Rpilot = 94.6% for 0.08 g/L AlCl3, 88.4% for 0.1 g/L FeCl3, and 68.3% for 0.04 g/L chitosan; (2) for D. tertiolecta, Rpilot = 81.7% for 0.1 g/L AlCl3, 87.9% for 0.2 g/L FeCl3, and 81.6% for 0.1 g/L chitosan; and (3) for C. sorokiniana, Rpilot = 89.6% for 0.1 g/L AlCl3, 98.6% for 0.2 g/L FeCl3, and 68.3% for 0.1 g/L chitosan. Flocculation reduced the harvesting costs by 85.9 ± 4.5% using chemical flocculants. Excesses of aluminum and iron in the biomass could be solved by decreasing the pH in the biomass combined with washing. This is the first study, to the best of our knowledge, that investigates the pilot-scale flocculation of three native Canarian microalgal strains. A pilot-scale pre-concentration step before centrifugation can improve the yield and reduce costs in the microalgae harvesting process.
Collapse
Affiliation(s)
| | - Zivan Gojkovic
- Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía de Tirajana, Gran Canaria, Spain
| | | | | | | |
Collapse
|
2
|
Nguyen DT, Johir MAH, Mahlia TMI, Silitonga AS, Zhang X, Liu Q, Nghiem LD. Microalgae-derived biolubricants: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176759. [PMID: 39393688 DOI: 10.1016/j.scitotenv.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Lubricants are indispensable in the modern economy for controlling friction and wear across many industries. Traditional lubricants are derived from petroleum crude and can cause significant ecological impact if released into the environment. Microalgae have emerged as a potential alternative to petroleum crude for producing renewable and environmentally friendly biolubricants. This review systematically assesses recent developments in microalgal-based biolubricant production, including tribological performance, microalgae selection, cultivation, harvesting, lipid and polysaccharide extraction and conversion to biolubricants, and market development. Compared to petroleum-based lubricants in terms of tribological properties, biolubricants are compatible with most emerging applications, such as electric vehicles and wind turbines. Nevertheless, they are less thermally and chemically stable, thus, may not be suitable for some traditional applications such as internal combustion engines. Literature data corroborated in this study reveals an urgent need for further research to scale up microalgae production and lower the cost of biomass harvesting. While technologies for converting microalgae-derived lipids to biolubricants appear to be well established, additional work is necessary to also utilize polysaccharides as another key ingredient for producing biolubricants, especially for low-temperature applications. Extraction methods are well established but further research is also needed to reduce the ecological impact, especially to utilize green solvents and reduce solvent consumption. Additionally, future research should delve into the use of nanoparticles as effective additives to obtain microalgae-based biolubricants with superior properties. Finally, it is essential to standardize the labeling system of biolubricants to establish a global market.
Collapse
Affiliation(s)
- Duong T Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - A S Silitonga
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaolei Zhang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
3
|
Quartaroli L, Sakamoto PB, Moruzzi RB, da Silva GHR. Microalgae separation in MP-PVC contaminated wastewater using plant-based coagulant over different extraction methods in Bauru, Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122713. [PMID: 39368380 DOI: 10.1016/j.jenvman.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study investigates the effectiveness of coagulation-flocculation and sedimentation (CFS) for separating microalgae, focusing on the use of various Moringa oleifera extracts as natural coagulants. We examined photobioreactor effluent (PBR) both with and without microplastic PVC (MP-PVC) contamination, referred to as PBR R2 and PBR R1, respectively. Utilising response surface methodology, we identified optimal conditions for the removal of microalgae and MP-PVC. Validation tests demonstrated that the aqueous extract of delipidated Moringa oleifera powder (AEDMOP) achieved high removal efficiencies, with coagulant dosages of 630 mg L-1 for PBR R1 and 625 mg L-1 for PBR R2. Both conditions showed microalgae removal efficiencies exceeding 83% for turbidity, colour, OD540 nm, OD680 nm, and OD750 nm, and 63% for OD254 nm. Interestingly, the optimised conditions for PBR R2 required slightly less coagulant, likely due to the additional particulate matter from MP-PVC. While extracellular polymeric substances (EPS) exhibited a marginal effect on flocculation, further investigation into their role in CFS is necessary. Our findings highlight the potential of AEDMOP for efficient microalgae separation, even in the presence of microplastics.
Collapse
Affiliation(s)
- Larissa Quartaroli
- Bauru College of Engineering, Department of Civil and Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil.
| | - Patrícia Bragança Sakamoto
- Bauru College of Engineering, Department of Civil and Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil.
| | - Rodrigo Braga Moruzzi
- Science and Technology Institute of São José dos Campos, Department of Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, Jardim São Dimas, 12245-000, São José dos Campos, SP, Brazil.
| | - Gustavo Henrique Ribeiro da Silva
- Bauru College of Engineering, Department of Civil and Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil.
| |
Collapse
|
4
|
Dai D, Qv M, Wu Q, Wang W, Huang L, Zhu L. Investigating flocculation mechanisms and ecological safety of cationic guar gum for rapid harvesting of microalgal cells. BIORESOURCE TECHNOLOGY 2024; 406:130979. [PMID: 38879054 DOI: 10.1016/j.biortech.2024.130979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
Addressing the drawbacks of traditional flocculants on microalgae biomass harvesting is crucial for large-scale industrial applications of microalgae production. In this study, cationic bioflocculant was successfully prepared by introducing cationic groups into the side chain of guar gum, achieving in-situ algae flocculation efficiency of 83.5 % with the dosage of 18.0 mg/L under pH = 10.0. Through a harmonious integration of predictive modelling and practical experimentation, a superior cell flocculation capacity of 23.5 g/g was achieved. In addition, the environmental safety and biocompatibility of cationic guar gum was assessed, using the typical suspension quantitative bacteriostatic method and the fluorescent double-staining technique. The results showed that the inhibition efficiency of Staphylococcus aureus in the system containing 60.0 mg/L cationic guar gum was only 12.0 % and there was no inhibition against Escherichia coli colonies. These findings provide a safe and green flocculant for efficient microalgae harvesting and spent medium treatment.
Collapse
Affiliation(s)
- Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
5
|
Dhandwal A, Bashir O, Malik T, Salve RV, Dash KK, Amin T, Shams R, Wani AW, Shah YA. Sustainable microalgal biomass as a potential functional food and its applications in food industry: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33431-6. [PMID: 38710849 DOI: 10.1007/s11356-024-33431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.
Collapse
Affiliation(s)
- Akhil Dhandwal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Tanu Malik
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Vinayak Salve
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Phagwara, Punjab, India
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| |
Collapse
|
6
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
7
|
Garrido-Romero J, Bernard D'Souza A, Hanelt D, Abomohra A. Lipid-rich particles of processed food waste for microalgae harvest through lipid-enriched floating biomat formation. BIORESOURCE TECHNOLOGY 2024; 394:130251. [PMID: 38145768 DOI: 10.1016/j.biortech.2023.130251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Food waste was collected from the campus canteen and lipid-rich particles (LRP) phase was evaluated to harvest Tetradesmus obliquus. Box-Behnken design showed the highest harvest efficiency (HE) of 84.69 % in run#1 (LRP = 30 %; initial OD680 = 1.75; and harvest time = 6 h). Numerical optimization ramps suggested 24.15 % (v/v) LRP ratio, initial OD680 3.00, and harvest time 3.82 h for maximum HE. Two flocs were observed, a precipitate at the bottom (B-Floc) and a floating biomat (F-Floc). Experimental results showed HE of 88.3 %, with 67 % and 33 % of the harvested biomass forming F-Floc and B-Floc, respectively. Pre-heating of LRP in a boiling water bath for 10 min (HFB-T10) promoted F-Floc proportion up to 91.6 %. In addition, HFB-T10 showed the highest FAMEs yield of 11.17 g/L of the total used volume, which was significantly higher than that of the centrifuged cells and heat-untreated biomat. Moreover, HFB-T10 showed better iodine value and cetane number of the produced biodiesel.
Collapse
Affiliation(s)
- Javier Garrido-Romero
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Alston Bernard D'Souza
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany.
| |
Collapse
|
8
|
Plaza-Rojas CA, Amaya-Orozco NA, Rivera-Hoyos CM, Montaña-Lara JS, Páez-Morales A, Salcedo-Reyes JC, Castillo-Carvajal LC, Martínez-Urrútia W, Díaz-Ariza LA, Pedroza-Rodríguez AM. Use of biochar and a post-coagulation effluent as an adsorbent of malachite green, beneficial bacteria carrier, and seedling substrate for plants belonging to the poaceae family. 3 Biotech 2023; 13:386. [PMID: 37928437 PMCID: PMC10624780 DOI: 10.1007/s13205-023-03766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/03/2023] [Indexed: 11/07/2023] Open
Abstract
Wastewater treatment plants produce solid and semi-solid sludge, which treatment minimises secondary environmental pollution because of wastewater treatment and obtaining new bioproducts. For this reason, in this paper, the co-pyrolysis of biogenic biomasses recovered from a biological reactor with immobilised fungal and bacterial biomass and a tertiary reactor with Chlorella sp. used for dye-contaminated wastewater treatment was carried out. Biogenic biomasses mixed with pine bark allowed the production and characterisation of two types of biochar. The raw material and biochar were on the "in vitro" germination of Lolium sp. seeds, followed by adsorption studies for malachite green (MG) dye using the raw material and the biochar. Results showed that using 60 mg L-1 of a cationic coagulant at pH 6.5 allowed for the recovery of more than 90% of the microalgae after 50 min of processing. Two biochar resulted: BC300, at pH 5.08 ± 0.08 and BC500, at pH 6.78 ± 0.01. The raw material and both biochars were co-inoculated with growth-promoting bacteria; their viabilities ranged from 1.7 × 106 ± 1.0 × 101 to 7.5 × 108 ± 6.0 × 102 CFU g-1 for total heterotrophic, nitrogen-fixing and phosphate-solubilising bacteria. Re-use tests on Lolium sp. seed germination showed that with the post-coagulation effluent, the germination was 100%, while with the biochar, with and without beneficial bacteria, the germination was 98 and 99%, respectively. Finally, BC500 adsorbed the highest percentage of malachite green at pH 4.0, obtaining qecal values of 0.5249 mg g-1 (R2: 0.9875) with the pseudo-second-order model. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03766-x.
Collapse
Affiliation(s)
- Christy A. Plaza-Rojas
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nelson A. Amaya-Orozco
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - José S. Montaña-Lara
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Adriana Páez-Morales
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Juan Carlos Salcedo-Reyes
- Laboratorio de Películas Delgadas y Nanofotónica, Grupo de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Wilmar Martínez-Urrútia
- Grupo de Diseño Avanzado, Fundación Universidad de América, P.O. Box 110-23, Bogotá, DC Colombia
| | - Lucía Ana Díaz-Ariza
- Laboratorio Asociaciones Suelo-Panta-Microorganismo, Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
9
|
Zheng Q, Ning R, Zhang M, Deng X. Biofuel production as a promising way to utilize microalgae biomass derived from wastewater: progress, technical barriers, and potential solutions. Front Bioeng Biotechnol 2023; 11:1250407. [PMID: 37662430 PMCID: PMC10471182 DOI: 10.3389/fbioe.2023.1250407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Qilin Zheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ruoxu Ning
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Meng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiangyuan Deng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang, China
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Nabi M, Liang H, Zhou Q, Cao J, Gao D. In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161262. [PMID: 36586290 DOI: 10.1016/j.scitotenv.2022.161262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a promising treatment technique for various types of wastewaters, and is preferred over other conventional aerobic and anaerobic methods. However, membrane fouling is considered a bottleneck in AnMBR system, which technically blocks membrane pores by numerous inorganics, organics, and other microbial substances. Various materials can be added in AnMBR to control membrane fouling and improve anaerobic digestion, and studies reporting the materials addition for this purpose are hereby systematically reviewed. The mechanism of membrane fouling control including compositional changes in extracellular polymeric substances (EPSs) and soluble microbial products (SMPs), materials properties, stimulation of antifouling microbes and alteration in substrate properties by material addition are thoroughly discussed. Nonetheless, this study opens up new research prospects to control membrane fouling of AnMBR, engineered by material, including compositional changes of microbial products (EPS and SMP), replacement of quorum quenching (QQ) by materials, and overall improvement of reactor performance. Regardless of the great research progress achieved previously in membrane fouling control, there is still a long way to go for material-mediated AnMBR applications to be undertaken, particularly for materials coupling, real scale application and molecular based studies on EPSs and SMPs, which were proposed for future researches.
Collapse
Affiliation(s)
- Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
11
|
Cui J, Niu X, Zhang D, Ma J, Zhu X, Zheng X, Lin Z, Fu M. The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter. Carbohydr Polym 2023; 304:120474. [PMID: 36641191 DOI: 10.1016/j.carbpol.2022.120474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
A novel flocculation strategy for simultaneously removing Microcystis aeruginosa and algal organic matter (AOM) was proposed using chitosan-amphoteric starch (C-A) dual flocculants in an efficient, cost-effective and ecologically friendly way, providing new insights for harmful algal blooms (HABs) control. A dual-functional starch-based flocculant, amphoteric starch (AS) with high anion degree of substitution (DSA) and cation degree of substitution (DSC), was prepared using a cationic moiety of 3-chloro-2-hydroxypropyltrimethylammonium chloride (CTA) coupled with an anion moiety of chloroacetic acid onto the backbone of starch simultaneously. In combination of the results of FTIR, XPS, 1H NMR, 13C NMR, GPC, EA, TGA and SEM, it was evidenced that the successfully synthesized AS with excellent structural characteristics contributed to the enhanced flocculation of M. aeruginosa. Furthermore, the novel C-A dual flocculants could achieve not only the removal of >99.3 % of M. aeruginosa, but also the efficacious flocculation of algal organic matter (AOM) at optimal concentration of (0.8:24) mg/L, within a wide pH range of 3-11. The analysis of zeta potential and cellular morphology revealed that the dual effects of both enhanced charge neutralization and notable netting-bridging played a vital role in efficient M. aeruginosa removal.
Collapse
Affiliation(s)
- Jingshu Cui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Jinling Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaoxian Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
12
|
Rao N, Gonzalez-Torres A, Tamburic B, Wong Y, Foubert I, Muylaert K, Henderson R, Vandamme D. The influence of physical floc properties on the separation of marine microalgae via alkaline flocculation followed by dissolved air flotation. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
13
|
Kaur M, Bhatia S, Gupta U, Decker E, Tak Y, Bali M, Gupta VK, Dar RA, Bala S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-31. [PMID: 36686403 PMCID: PMC9840174 DOI: 10.1007/s11101-022-09848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research. Graphical abstract
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surekha Bhatia
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Urmila Gupta
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Eric Decker
- Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Yamini Tak
- Agricultural Research Station, Agricultural University, Ummedganj, Kota India
| | - Manoj Bali
- Research & Development, Chemical Resources (CHERESO), Panchkula, Haryana India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Materials Research Center, SRUC Barony Campus, Dumfries, Scotland, UK
| | - Rouf Ahmad Dar
- Sam Hiiginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007 India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
14
|
Yang Z, Hou J, Pan Z, Wu M, Zhang M, Wu J, Miao L. A innovative stepwise strategy using magnetic Fe 3O 4-co-graft tannin/polyethyleneimine composites in a coupled process of sulfate radical-advanced oxidation processes to control harmful algal blooms. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129485. [PMID: 35868085 DOI: 10.1016/j.jhazmat.2022.129485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
A novel co-graft tannin and polyethyleneimine co-coating magnetic composite (TP@Fe3O4) was prepared in the study. On this premise, an unique stepwise efficient strategy based on magnetic flocculation and Sulfate radical (SO4•-)-advanced oxidation processes (S-AOPs) for eliminating Microcystis aeruginosa (M. aeruginosa) and algal organic matters (AOMs) was presented. Due to the high positive charge of TP@Fe3O4, a > 99 % high algae removal rate was obtained at a modest TP@Fe3O4 dosage of 100 mg/L at pH = 8.0 with a short separation time of 5 min. Further, peroxymonosulfate (PMS) treatment was employed as a pre-oxidation method to lower cell stability and promote M. aeruginosa removal by subsequent TP@Fe3O4 flocculation. The PMS/TP@Fe3O4 system successfully cuts the optimum dose of TP@Fe3O4 in half (50 mg/L) without causing obvious cell damage. Following algal fast magnetic separation, ultraviolet (UV) was introduced to activate PMS to totally degrade AOM and microcystin. Response surface methodology (RSM) demonstrated that UV/PMS oxidation removed > 80 % of DOC and > 94 % of microcystin under optimal conditions. SO4•- was the main radical species that aided in the elimination of AOM. This is the first study to use magnetic flocculation in conjunction with AOPs to mitigate harmful algal blooms, which can enable the non-destructive eradication of M. aeruginosa while also efficiently degrading AOMs.
Collapse
Affiliation(s)
- Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhengguo Pan
- Wuxi Delinhai Environmental Protection Technology Co., Ltd, China
| | - Miao Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
15
|
Marinho YF, de Oliveira APS, Oliveira CYB, Napoleão TH, Guedes Paiva PM, de Sant’Anna MCS, Malafaia CB, Gálvez AO. Usage of Moringa oleifera residual seeds promotes efficient flocculation of Tetradesmus dimorphus biomass. BIOMASS CONVERSION AND BIOREFINERY 2022:1-9. [PMID: 35582461 PMCID: PMC9101992 DOI: 10.1007/s13399-022-02789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Bio-flocculation is a sustainable low-cost harvesting technique for microalgae biomass production; however, it is generally less efficient than chemical flocculants. This study aims to investigate the efficiency of Moringa oleifera seeds as a bio-flocculant for harvesting Tetradesmus dimorphus biomass. Four extracts from integral and residual (seeds without lipids) biomass of M. oleifera seeds using salt or aqueous solutions were used at four concentrations (100, 200, 300, and 400 ppm). Flocculation efficiency (FE) increased as the pH decreased. The addition of the extracts reduced the pH of the cultures, dispensing pH adjustment after dosing the flocculating agent. Salt extracts exhibited higher flocculation efficiency than aqueous extracts. The highest flocculation efficiency (~ 98%) was obtained using a salt extract of residual biomass of seeds in any concentration varying from 100 to 400 ppm. The predicted values obtained from a data modeling using response surface methodology approached the real values (r 2 = 0.9382), resulting in an adequate optimization of the flocculant concentration of ~ 335 ppm and pH 5.6 for a predicted FE of ~ 106%. The findings of the present study confirmed that the salt extract from residual biomass of M. oleifera seeds is an effective bio-flocculant for T. dimorphus biomass harvesting.
Collapse
Affiliation(s)
- Yllana F. Marinho
- Centro de Ciências Humanas, Naturais, Saúde e Tecnologia, Universidade Federal do Maranhão, Pinheiro, Maranhão 65200-000 Brazil
| | | | - Carlos Yure B. Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, St. Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco 52171-900 Brazil
| | - Thiago H. Napoleão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420 Brazil
| | - Patrícia M. Guedes Paiva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420 Brazil
| | | | - Carolina B. Malafaia
- Centro de Tecnologias Estratégicas do Nordeste, Cidade Universitária, Av. Prof. Luís Freire, 01, Recife, Pernambuco CEP 50740-540 Brazil
| | - Alfredo O. Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, St. Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco 52171-900 Brazil
| |
Collapse
|
16
|
Teixeira MS, Speranza LG, da Silva IC, Moruzzi RB, Silva GHR. Tannin-based coagulant for harvesting microalgae cultivated in wastewater: Efficiency, floc morphology and products characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150776. [PMID: 34619210 DOI: 10.1016/j.scitotenv.2021.150776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Tannin-based coagulants (TBCs) have the potential to be used to harvest microalgae cultivated at wastewater treatment plants. Their use would address the circular economy associated with the production of low-toxicity biomass and supernatant. Studies in this field are still scarce, and substantial gaps exist in the definitions of the flocculation process parameters. In this context, the objective of this work was to evaluate TBC performance as a natural coagulant for harvesting microalgae biomass grown in sanitary effluent digested in an up flow biofilter, as well establishing a path to enable recovery and reuse of wastewater nutrients. Classical removal techniques combined with image analysis and light scattering-based equipment were used to evaluate the coagulant performance, recovery efficiency, floc strength, and floc recovery compared to aluminum sulfate (AS). The results showed that TBC was able to efficiently harvest algal biomass from the effluent, achieving color, turbidity, and optical density (OD) removal efficiencies greater than 90% with only 5 min of sedimentation. The optimal harvesting dosage was 100 mg·L-1 for TBC and 75 mg·L-1 for AS. TBC presented the advantage of harvesting biomass without changing the pH of the medium and was also able to present satisfactory removal of the analyzed parameters (color, turbidity and OD) at pH values of 5.0, 7.0, and 8.5. In addition, TBC produced stronger flocs than AS, showing a better ability to resist breakage upon sudden shear rate variations. TBC produced macronutrient-rich biomass and supernatant that was similar to that produced with AS.
Collapse
Affiliation(s)
- Mariana Souza Teixeira
- Universidade Estadual de São Paulo Júlio de Mesquita Filho (UNESP), Campus de Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01, Vargem Limpa, 17033-360 Bauru, SP, Brazil.
| | - Lais Galileu Speranza
- Associação Oceano Verde (GreenCoLab), Universidade do Algarve, Campus de Gambelas, Pavilhão B1, Gabinete H8, 8005-139 Faro, Portugal; Universidade Estadual de São Paulo Júlio de Mesquita Filho (UNESP), Campus de Rio Claro, Avenida 24 A,1515, Bela Vista, 13506-692 Rio Claro. SP, Brazil.
| | - Isabel Costacurta da Silva
- Universidade Estadual de São Paulo Júlio de Mesquita Filho (UNESP), Campus de Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01, Vargem Limpa, 17033-360 Bauru, SP, Brazil.
| | - Rodrigo Braga Moruzzi
- Universidade Estadual de São Paulo Júlio de Mesquita Filho (UNESP), Campus de Rio Claro, Avenida 24 A,1515, Bela Vista, 13506-692 Rio Claro. SP, Brazil.
| | - Gustavo Henrique Ribeiro Silva
- Universidade Estadual de São Paulo Júlio de Mesquita Filho (UNESP), Campus de Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01, Vargem Limpa, 17033-360 Bauru, SP, Brazil.
| |
Collapse
|