1
|
Tariq TB, Karishma, Umer M, Mubeen-Ur-Rehman. The potential of seaweed-derived polysaccharides as sustainable biostimulants in agriculture. Int J Biol Macromol 2025; 298:140009. [PMID: 39828156 DOI: 10.1016/j.ijbiomac.2025.140009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Seaweed polysaccharides such as alginate, carrageenan, agar, and ulvan are emerging as key bioresources in sustainable agriculture due to their unique structural characteristics and functional properties. This review highlights their potential as eco-friendly biostimulants capable of enhancing soil health, plant growth, and stress resilience. Specific mechanisms, including the gel-forming capacity of alginate, ion exchange abilities, and the hydrophilic nature of these polysaccharides, enable improved water retention, nutrient uptake, and plant productivity under adverse conditions, including drought, salinity, and extreme temperatures. Moreover, their role as hydrogels and bio-elicitors introduces novel approaches to addressing global challenges in agriculture, such as climate change and food security. Real-world applications, such as the use of Ascophyllum nodosum extract for drought tolerance and Gracilaria tenuistipitata var. liui to boost grain yields, underscore the practicality and success of these biostimulants. Despite their promising applications, challenges like variability in seaweed quality, high extraction costs, and limited product standardization hinder their scalability. This review provides an integrated analysis of their biochemical properties, agricultural applications, and commercial products while proposing solutions to optimize their use for advancing sustainable farming practices.
Collapse
Affiliation(s)
- Tayyaba Bint Tariq
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Karishma
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Umer
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mubeen-Ur-Rehman
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
2
|
Akhyani DD, Agarwal P, Mesara S, Agarwal PK. Deciphering the potential of Sargassum tenerrimum extract: metabolic profiling and pathway analysis of groundnut ( Arachis hypogaea) in response to Sargassum extract and Sclerotium rolfsii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:317-336. [PMID: 38623170 PMCID: PMC11016048 DOI: 10.1007/s12298-024-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Seaweed extracts have enormous potential as bio-stimulants and demonstrated increased growth and yield in different crops. The presence of physiologically active component stimulate plant stress signaling pathways, enhances growth and productivity, as well as serve as plant defense agents. The seaweed extracts can reduce the use of chemicals that harm the environment for disease management. In the present study, the Sargassum tenerrimum extract treatment was applied, alone and in combination with Sclerotium rolfsii, to Arachis hypogea, to study the differential metabolite expression. The majority of metabolites showed maximum accumulation with Sargassum extract-treated plants compared to fungus-treated plants. The different classes of metabolite compounds like sugars, carboxylic acids, polyols, showed integrated peaks in different treatments of plants. The sugars were higher in Sargassum extract and Sargassum extract + fungus treatments compared to control and fungus treatment, respectively. Interestingly, Sargassum extract + fungus treatment showed maximum accumulation of carboxylic acids. Pathway enrichment analysis showed regulation of different metabolites, highest impact with galactose metabolism pathway, identifying sucrose, myo-inositol, glycerol and fructose. The differential metabolite profiling and pathway analysis of groundnut in response to Sargassum extract and S. rolfsii help in understanding the groundnut- S. rolfsii interactions and the potential role of the Sargassum extract towards these interactions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01418-9.
Collapse
Affiliation(s)
- Dhanvi D. Akhyani
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Parinita Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Sureshkumar Mesara
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Pradeep K. Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
Nabi A, Aftab T, Khan MMA, Naeem M. Depolymerized carrageenan expresses elicitor-like activity on Mentha arvensis L. under arsenic stress: Insights into arsenic resilience and monoterpene synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108376. [PMID: 38354526 DOI: 10.1016/j.plaphy.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Heavy metals contaminate agricultural land by limiting the productivity of crops and making them or their products unfit for consumption. Arsenic (As) is a potentially hazardous metalloid that severely impacts plants' survival. Menthol mint (Mentha arvensis L.) bears volatile compounds that are harshly exaggerated by diverse environmental factors like drought, salinity, heavy metal, temperature, photoperiod, and luminosity stresses. In this study, the phytotoxicity of As was examined in M. arvensis L. and its alleviation through the supplementation of oligomers of carrageenan. Noticeably, scanty information is available regarding the effect of irradiated carrageenan (ICA) on As-stressed plants. In order to observe the same in the case of M. arvensis L., the effect of ICA on As-treated plants was explored. The ICA concentration (foliar-applied) selected for the study was 80 mg L-1, 100 mg L-1 and 120 mg L-1, and that of As (soil-applied) was 80 mg kg-1 soil. Excess accumulation of As resulted in reduced growth, enzymatic activities, and yield and quality parameters of M. arvensis L. under As toxicity. However, the foliage application of ICA strengthens the antioxidant machinery and other physiological and oxidative stress biomarkers of the plant by facilitating the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and proline, and, therefore aids in alleviating the toxicity generated by As. Nevertheless, ICA supplementation proves beneficial in enhancing the monoterpene synthesis (essential oil production and its active constituents) of M. arvensis L. by maintaining a steady-state equilibrium between reactive oxygen species (ROS) production and its scavenging process.
Collapse
Affiliation(s)
- Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Kee PE, Phang SM, Lan JCW, Tan JS, Khoo KS, Chang JS, Ng HS. Tropical Seaweeds as a Sustainable Resource Towards Circular Bioeconomy: Insights and Way Forward. Mol Biotechnol 2023:10.1007/s12033-023-00940-7. [PMID: 37938536 DOI: 10.1007/s12033-023-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
Collapse
Affiliation(s)
- Phei Er Kee
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew Moi Phang
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
- Institute Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan, 32003, Taiwan.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan.
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Lin Y, Gu H, Jia X, Wang W, Hong B, Zhang F, Yin H. Rhizoctonia solani AG1 IA extracellular polysaccharides: Structural characterization and induced resistance to rice sheath blight. Int J Biol Macromol 2023; 244:125281. [PMID: 37330100 DOI: 10.1016/j.ijbiomac.2023.125281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Sheath blight, caused by Rhizoctonia solani (R. solani), is one of the most serious diseases of rice. Extracellular polysaccharides (EPS) are complex polysaccharides secreted by microbes that have a pivotal role in the plant-microbe interaction. At present, many studies have been carried out on R. solani, but it is not very clear whether the EPS is secreted by R. solani exists. Therefore, we isolated and extracted the EPS from R. solani, two kinds of EPS (EW-I and ES-I) were obtained by DEAE-cellulose 52 and Sephacryl S-300HR column further purification, and their structures were characterized by FT-IR, UV, GC, and NMR analysis. The results showed that EW-I and ES-I had similar monosaccharide composition but different molar ratio, they were composed of fucose, arabinose, galactose, glucose, and mannose with a ratio of 7.49: 27.72: 2.98: 6.66: 55.15 and 3.81: 12.98: 6.15: 10.83: 66.23, and their backbone may be composed of →2)-α-Manp-(1→ residues, beside ES-I was highly branched compared to EW-I. The exogenous application of EW-I and ES-I had no effect on the growth of R. solani AG1 IA itself, but their pretreatment of rice induced plant defense through activation of the salicylic acid pathway, resulting in enhanced resistance to sheath blight.
Collapse
Affiliation(s)
- Yudie Lin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Hong
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 715299, China
| | - Fuyun Zhang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
6
|
Bosmaia TC, Agarwal P, Dangariya M, Khedia J, Gangapur DR, Agarwal PK. Transcriptomic analysis towards identification of defence-responsive genes and pathways upon application of Sargassum seaweed extract on tomato plants infected with Macrophominaphaseolina. 3 Biotech 2023; 13:179. [PMID: 37193326 PMCID: PMC10182239 DOI: 10.1007/s13205-023-03565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
The charcoal-rot caused by Macrophomina phaseolina is one of the major disease in many economically important crop plants including tomato. The molecular responses of the host plant against the M. phaseolina are poorly stated. In the present study, for the first time the molecular insight of tomato-Macrophomina interaction and Sargassum tenerrimum extract (SE) toward managing disease through RNA-seq approach is established. A total of 449 million high-quality reads (HQRs) were obtained and aligned to the tomato genome with an average mapping of 89.12%. The differentially expressed genes (DEGs) regulated across the different treatment pairs were identified. Several DEGs, such as receptor-like kinases (SlRLKs), transcription factors including SlWRKY70, SlGRAS4, SlERF4, SlERF25, pathogenesis related-1 (SlPR1), SlPR2, endochitinase and peroxidase were significantly up-regulated in SE + Macrophomina treated sample as compared to only Macrophomina treated sample. The crosstalk between salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) was a key factor to regulate resistance in tomato during SE + Macrophomina treatment. The KEGG pathway including plant hormone signal transduction, plant-pathogen interaction and mitogen-activated protein kinase (MAPK) signaling pathway were significantly enriched. The RNA-seq data were validated through qPCR using 12 disease-responsive genes and correlated significantly with R2 = 0.73. The present study suggests that SE act as an elicitor molecule and activate the defence-related pathways similar to PAMP-triggered immunity in tomato. The jasmonic acid (JA) mediated signaling pathway was identified as a key factor to induce resistance in tomato against Macrophomina infection. The present study depicts the beneficial effects of SE by regulating molecular mechanism towards defence responses in tomato against Macrophomina infection. The application of SE brings out new prospects to induce disease tolerance in the agricultural crops. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03565-4.
Collapse
Affiliation(s)
- Tejas C. Bosmaia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Mohit Dangariya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Jackson Khedia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Doddabhimappa R. Gangapur
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
7
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
8
|
A Novel Sulfated Glycoprotein Elicitor Extracted from the Moroccan Green Seaweed Codium decorticatum Induces Natural Defenses in Tomato. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sulfated glycoproteins extracted for the first time from the Moroccan green seaweed Codium decorticatum were investigated for their ability to induce a natural defense metabolism in the roots and the upper leaves of tomato seedlings. The crude (AGB) and the purified fractions (AGP) were characterized chemically (Colorimetric assays) and structurally (SEC-MALS, GC-EI/MS, ATR-FTIR). The elicitor aqueous solutions (1 g/L) were applied by foliar spray and syringe infiltration into the internodal middle of 45-day-old tomato seedlings. Phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin contents were measured in the roots and the leaves after 0 h, 12, 24, 48, and 72 h of treatment. The AGB and AGP extracts contained 37.67% and 48.38% of the total carbohydrates, respectively, and were mainly composed of galactose, glucose, arabinose, and a minor amount of xylose and rhamnose. They were characterized by an important molecular weight (Mw) > of 2000 × 103 g·mol−1 and a high degree of sulfation and protein (12–23% (w/w)), indicating that the extracted polysaccharides could be an arabinogalactan-rich protein present in the cell wall of the green seaweed C. decorticatum. Both crude and purified fractions exhibited an elicitor effect by inducing the PAL activity, the accumulation of phenolic compounds and lignin contents in the roots and the leaves of tomato seedlings. These responses were systemic in both the methods used (injection and foliar spray) and were mobilized throughout tissues that are not directly treated (roots and/or leaves). Regarding the elicitor activities, AGB and AGP presented globally similar patterns, which revealed the importance of crude extracts in the stimulation of plant immunity. These results suggest the new application of sulfated glycoprotein isolated from green seaweed in agriculture as inducers of natural defenses of plants.
Collapse
|
9
|
Samuels LJ, Setati ME, Blancquaert EH. Towards a Better Understanding of the Potential Benefits of Seaweed Based Biostimulants in Vitis vinifera L. Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030348. [PMID: 35161328 PMCID: PMC8839555 DOI: 10.3390/plants11030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
Globally, 7.4 million hectares of arable land is planted with grapevine with a farm gate value of $68.3 billion. The production of grapes faces growing pressure associated with challenges such as climate change, diminishing resources as well as the overuse of chemical fertilizers and synthetic pesticides, which have an impact on sustainability. Consequently, viticulture has over the years embraced and implemented various practices such integrated pest management, organic and biodynamic farming to curb the high chemical inputs typically used in conventional farming. Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers and plant growth regulators. Seaweed is of particular interest because of its availability globally. It was reported that brown seaweed (Ascophyllum spp.) improves plant growth and agricultural productivity, hormonal signalling, and an improved secondary plant metabolism. It also provides an alternative to soil supplementation, avoiding some of the negative effects of fertilizers through the leaching of nutrients into groundwater sources. This review aims to provide a summary of the use of seaweed extracts in grape production and their influence on grapevine physiology and stress adaptation mechanisms.
Collapse
|