1
|
Ashour M, Mansour AT, Alkhamis YA, Elshobary M. Usage of Chlorella and diverse microalgae for CO 2 capture - towards a bioenergy revolution. Front Bioeng Biotechnol 2024; 12:1387519. [PMID: 39229458 PMCID: PMC11368733 DOI: 10.3389/fbioe.2024.1387519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
To address climate change threats to ecosystems and the global economy, sustainable solutions for reducing atmospheric carbon dioxide (CO2) levels are crucial. Existing CO2 capture projects face challenges like high costs and environmental risks. This review explores leveraging microalgae, specifically the Chlorella genus, for CO2 capture and conversion into valuable bioenergy products like biohydrogen. The introduction section provides an overview of carbon pathways in microalgal cells and their role in CO2 capture for biomass production. It discusses current carbon credit industries and projects, highlighting the Chlorella genus's carbon concentration mechanism (CCM) model for efficient CO2 sequestration. Factors influencing microalgal CO2 sequestration are examined, including pretreatment, pH, temperature, irradiation, nutrients, dissolved oxygen, and sources and concentrations of CO2. The review explores microalgae as a feedstock for various bioenergy applications like biodiesel, biooil, bioethanol, biogas and biohydrogen production. Strategies for optimizing biohydrogen yield from Chlorella are highlighted. Outlining the possibilities of further optimizations the review concludes by suggesting that microalgae and Chlorella-based CO2 capture is promising and offers contributions to achieve global climate goals.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Fish and Animal Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yousef A. Alkhamis
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Water and Environment Study Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mostafa Elshobary
- Department of Botany and microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Li T, Peng H, He B, Hu C, Zhang H, Li Y, Yang Y, Wang Y, Bakr MMA, Zhou M, Peng L, Kang H. Cellulose de-polymerization is selective for bioethanol refinery and multi-functional biochar assembly using brittle stalk of corn mutant. Int J Biol Macromol 2024; 264:130448. [PMID: 38428756 DOI: 10.1016/j.ijbiomac.2024.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
As lignocellulose recalcitrance principally restricts for a cost-effective conversion into biofuels and bioproducts, this study re-selected the brittle stalk of corn mutant by MuDR-transposon insertion, and detected much reduced cellulose polymerization and crystallinity. Using recyclable CaO chemical for biomass pretreatment, we determined a consistently enhanced enzymatic saccharification of pretreated corn brittle stalk for higher-yield bioethanol conversion. Furthermore, the enzyme-undigestible lignocellulose was treated with two-step thermal-chemical processes via FeCl2 catalysis and KOH activation to generate the biochar with significantly raised adsorption capacities with two industry dyes (methylene blue and Congo red). However, the desirable biochar was attained from one-step KOH treatment with the entire brittle stalk, which was characterized as the highly-porous nanocarbon that is of the largest specific surface area at 1697.34 m2/g and 2-fold higher dyes adsorption. Notably, this nanocarbon enabled to eliminate the most toxic compounds released from CaO pretreatment and enzymatic hydrolysis, and also showed much improved electrochemical performance with specific capacitance at 205 F/g. Hence, this work has raised a mechanism model to interpret how the recalcitrance-reduced lignocellulose is convertible for high-yield bioethanol and multiple-function biochar with high performance.
Collapse
Affiliation(s)
- Tianqi Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Boyang He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyi Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujing Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mahmoud M A Bakr
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol 2023; 39:305. [PMID: 37691054 DOI: 10.1007/s11274-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.
Collapse
Affiliation(s)
- Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
4
|
Bader AN, Sanchez Rizza L, Consolo VF, Curatti L. Bioprospecting for fungal enzymes for applications in microalgal biomass biorefineries. Appl Microbiol Biotechnol 2023; 107:591-607. [PMID: 36527478 DOI: 10.1007/s00253-022-12328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Microalgal biomass is a promising feedstock for biofuels, feed/food, and biomaterials. However, while production and commercialization of single-product commodities are still not economically viable, obtaining multiple products in a biomass biorefinery faces several techno-economic challenges. The aim of this study was to identify a suitable source of hydrolytic enzymes for algal biomass saccharification. Screening of twenty-six fungal isolates for secreted enzymes activity on Chlamydomonas reinhardtii biomass resulted in the identification of Aspergillus niger IB-34 as a candidate strain. Solid-state fermentation on wheat bran produced the most active enzyme preparations. From sixty-five proteins identified by liquid chromatography coupled to mass spectrometry (LC-MS) (ProteomeXchange, identifier PXD034998) from A. niger IB-34, the majority corresponded to predicted secreted proteins belonging to the Gene Ontology categories of catalytic activity/hydrolase activity on glycosyl and O-glycosyl compounds. Skimmed biomass of biotechnologically relevant strains towards the production of commodities, Chlorella sorokiniana and Scenedesmus obliquus, was fully saccharified after a mild pretreatment at 80 °C for 10 min, at a high biomass load of 10% (w/v). The soluble liquid stream, after skimming and saccharification of biomass of both strains, was further converted into ethanol by fermentation with Saccharomyces cerevisiae at a theoretical maximum efficiency, in a separated saccharification and fermentation assays. The resulting insoluble protein, after biomass skimming with an organic solvent and enzymatic saccharification, was highly digestible in an in vitro digestion assay. Proof of concept is presented for an enzyme-assisted biomass biorefinery recovering 81% of the main biomass fractions in a likely suitable form for the conversion of lipids and carbohydrates into biofuels and proteins into feed/food. KEY POINTS: • Twenty-six fungal extracts were analyzed for saccharification of microalgal biomass. • Skimmed biomass was fully enzymatically saccharified and fermented into ethanol. • Up to 81% recovery of biomass fractions suitable for biofuels and feed/food.
Collapse
Affiliation(s)
- Araceli Natalia Bader
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Lara Sanchez Rizza
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Verónica Fabiana Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Leonardo Curatti
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina.
| |
Collapse
|
5
|
Kant Bhatia S, Ahuja V, Chandel N, Gurav R, Kant Bhatia R, Govarthanan M, Kumar Tyagi V, Kumar V, Pugazendhi A, Rajesh Banu J, Yang YH. Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes. BIORESOURCE TECHNOLOGY 2022; 358:127437. [PMID: 35680087 DOI: 10.1016/j.biortech.2022.127437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Urbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Arivalagan Pugazendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Ma J, Li Q, Wu Y, Yue H, Zhang Y, Zhang J, Shi M, Wang S, Liu GQ. Elucidation of ligninolysis mechanism of a newly isolated white-rot basidiomycete Trametes hirsuta X-13. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:189. [PMID: 34563244 PMCID: PMC8466896 DOI: 10.1186/s13068-021-02040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/11/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignin is a complex aromatic heteropolymer comprising 15-30% dry weight of the lignocellulose. The complex structural characteristic of lignin renders it difficult for value-added utilization. Exploring efficient lignin-degrading microorganisms and investigating their lignin-degradation mechanisms would be beneficial for promoting lignin valorization. In this study, a newly isolated white-rot basidiomycete, Trametes hirsuta X-13, with capacity to utilize alkaline lignin as the sole substrate was investigated. RESULTS The analysis of the fermentation properties of T. hirsuta X-13 using alkaline lignin as the sole substrate, including the mycelial growth, activities of ligninolytic enzymes and the rates of lignin degradation and decolorization confirmed its great ligninolysis capacity. The maximum lignin degradation rate reached 39.8% after 11 days of T. hirsuta X-13 treatment, which was higher than that of reported fungi under the same condition. Fourier transform infrared spectrometry (FTIR), gas chromatography-mass spectrometry (GC-MS) scanning electron micrographs (SEM), two-dimensional heteronuclear single quantum coherence NMR analysis (2D-HSQC NMR) collaborated with pyrolysis gas chromatography-mass spectrometry (py-GC/MS) analyses proved that lignin structure was severely deconstructed along with amounts of monomer aromatics generated. Furthermore, according to those chemical analysis, in addition to canonical Cα-Cβ breakage, the cleavage of lignin interunit linkages of β-β might also occur by T. hirsuta X-13. CONCLUSIONS This study characterized a newly isolated white-rot basidiomycete T. hirsuta X-13 with impressive alkaline lignin degradation ability and provided mechanistic insight into its ligninolysis mechanism, which will be valuable for the development of lignin valorization strategies.
Collapse
Affiliation(s)
- Jiangshan Ma
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Yujie Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Huimin Yue
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Yanghong Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Jiashun Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Muling Shi
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Sixian Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| |
Collapse
|