1
|
Retta B, Iovinella M, Ciniglia C. Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta). PLANTS (BASEL, SWITZERLAND) 2024; 13:1786. [PMID: 38999626 PMCID: PMC11243675 DOI: 10.3390/plants13131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Galdieria sulphuraria is a thermo-acidophilic microalga belonging to the Cyanidiophyceae (Rhodophyta) class. It thrives in extreme environments, such as geothermal sulphuric springs, with low pH, high temperatures, and high salinity. This microalga utilises various growth modes, including autotrophic, heterotrophic, and mixotrophic, enabling it to exploit diverse organic carbon sources. Remarkably, G. sulphuraria survives and produces a range of bioactive compounds in these harsh conditions. Moreover, it plays a significant role in environmental remediation by removing nutrients, pathogens, and heavy metals from various wastewater sources. It can also recover rare earth elements from mining wastewater and electronic waste. This review article explores the diverse applications and significant contributions of G. sulphuraria.
Collapse
Affiliation(s)
- Berhan Retta
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Manuela Iovinella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
2
|
Adams E, Maeda K, Kamemoto Y, Hirai K, Apdila ET. Contribution to a Sustainable Society: Biosorption of Precious Metals Using the Microalga Galdieria. Int J Mol Sci 2024; 25:704. [PMID: 38255777 PMCID: PMC10815428 DOI: 10.3390/ijms25020704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The red microalga Galdieria sp. is an extremophile that inhabits acidic hot sulphur springs and grows heterotrophically to a high cell density. These characteristics make Galdieria suitable for commercial applications as stable mass production is the key to success in the algae business. Galdieria has great potential as a precious metal adsorbent to provide a sustainable, efficient and environmentally benign method for urban mining and artisanal small-scale gold mining. The efficiency and selectivity in capturing precious metals, gold and palladium from metal solutions by a Galdieria-derived adsorbent was assessed relative to commercially used adsorbents, ion exchange resin and activated charcoal. As it is only the surface of Galdieria cells that affect metal adsorption, the cell content was analysed to determine the manner of utilisation of those metabolites. Galdieria was shown to be protein-rich and contain beneficial metabolites, the levels of which could shift depending on the growth conditions. Separating the cell content from the adsorbent could improve the adsorption efficiency and reduce CO2 emissions during the metal collection process. The commercial applications of Galdieria appear promising: growth is quick and dense; the precious metal adsorption capacity is highly efficient and selective in acidic conditions, especially at low metal concentrations; and the cell content is nutrient-rich.
Collapse
Affiliation(s)
- Eri Adams
- Galdieria, Co., Ltd., Yokohama 2300046, Kanagawa, Japan (E.T.A.)
| | | | | | | | | |
Collapse
|
3
|
Iovinella M, Palmieri M, Papa S, Auciello C, Ventura R, Lombardo F, Race M, Lubritto C, di Cicco MR, Davis SJ, Trifuoggi M, Marano A, Ciniglia C. Biosorption of rare earth elements from luminophores by G. sulphuraria (Cyanidiophytina, Rhodophyta). ENVIRONMENTAL RESEARCH 2023; 239:117281. [PMID: 37827370 DOI: 10.1016/j.envres.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Lanthanides are indispensable constituents of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and eco-friendly recycling methods. In the present study, freeze-dried biomass of the polyextremophile Galdieria sulphuraria was employed to recover REEs from spent fluorescent lamps (FL) luminophores by pretreating the freeze-dried biomass with an acid solution to favour ion exchange and enhance the binding sites on the cell surface available for the metal ions. Lanthanides were extracted from the luminophores using sulfuric acid solutions according to standardised procedures, and the effect of biosorbent dosage (0.5-5 mg/ml) and biosorption time (5-60 min) were evaluated. The content of individual REEs in the luminophores and the resulting algal biomass were determined using inductively coupled plasma mass spectrometry (ICP-MS). The most abundant REE in the luminophores was yttrium (287.42 mg/g dm, 91.60% of all REEs), followed by europium (20.98 mg/g, 6.69%); cerium, gadolinium, terbium and lanthanum was in trace. The best biosorption performances were achieved after 5 min and at the lowest biosorbent dosage (0.5 mg/mL). The highest total metal amount corresponded to 41.61 mg/g dried mass, and yttrium was the most adsorbed metal (34.59 mg/g dm, 82.88%), followed by cerium (4.01 mg/g); all other metals were less than 2 mg/g. The rapidity of the biosorption process and the low biosorbent dosage required confirmed this microalga as a promising material for creating an eco-sustainable protocol for recycling REEs.
Collapse
Affiliation(s)
- M Iovinella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy; Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK
| | - M Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - S Papa
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - C Auciello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - R Ventura
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - F Lombardo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, I-80126, Naples, Italy
| | - M Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, Italy
| | - C Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - M R di Cicco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - S J Davis
- Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK
| | - M Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, I-80126, Naples, Italy
| | - A Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, I-80126, Naples, Italy
| | - C Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy; Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK.
| |
Collapse
|
4
|
Kharel HL, Shrestha I, Tan M, Nikookar M, Saraei N, Selvaratnam T. Cyanidiales-Based Bioremediation of Heavy Metals. BIOTECH 2023; 12:29. [PMID: 37092473 PMCID: PMC10123701 DOI: 10.3390/biotech12020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
With growing urbanization and ongoing development activities, the consumption of heavy metals has been increasing globally. Although heavy metals are vital for the survival of living beings, they can become hazardous when they surpass the permissible limit. The effect of heavy metals varies from normal to acute depending on the individual, so it is necessary to treat the heavy metals before releasing them into the environment. Various conventional treatment technologies have been used based on physical, chemical, and biological methods. However, due to technical and economic constraints and poor sustainability towards the environment, the use of these technologies has been limited. Microalgal-based heavy metal removal has been explored for the past few decades and has been seen as an effective, environment-friendly, and inexpensive method compared to conventional treatment technology. Cyanidiales that belong to red algae have the potential for remediation of heavy metals as they can withstand and tolerate extreme stresses of heat, acid salts, and heavy metals. Cyanidiales are the only photosynthetic organisms that can survive and thrive in acidic mine drainage, where heavy metal contamination is often prevalent. This review focuses on the algal species belonging to three genera of Cyanidiales: Cyanidioschyzon, Cyanidium, and Galdieria. Papers published after 2015 were considered in order to examine these species' efficiency in heavy metal removal. The result is summarized as maximum removal efficiency at the optimum experimental conditions and based on the parameters affecting the metal ion removal efficiency. This study finds that pH, initial metal concentration, initial algal biomass concentration, algal strains, and growth temperature are the major parameters that affect the heavy metal removal efficiency of Cyanidiales.
Collapse
Affiliation(s)
- Hari Lal Kharel
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (I.S.); (M.T.); (M.N.)
| | - Ina Shrestha
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (I.S.); (M.T.); (M.N.)
| | - Melissa Tan
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (I.S.); (M.T.); (M.N.)
| | - Mohammad Nikookar
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (I.S.); (M.T.); (M.N.)
| | - Negar Saraei
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (I.S.); (M.T.); (M.N.)
| | - Thinesh Selvaratnam
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (I.S.); (M.T.); (M.N.)
- Center for Advances in Water & Air Quality, College of Engineering, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|