1
|
Klain A, Giovannini M, Pecoraro L, Barni S, Mori F, Liotti L, Mastrorilli C, Saretta F, Castagnoli R, Arasi S, Caminiti L, Gelsomino M, Indolfi C, Del Giudice MM, Novembre E. Exercise-induced bronchoconstriction, allergy and sports in children. Ital J Pediatr 2024; 50:47. [PMID: 38475842 DOI: 10.1186/s13052-024-01594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is characterized by the narrowing of airways during or after physical activity, leading to symptoms such as wheezing, coughing, and shortness of breath. Distinguishing between EIB and exercise-induced asthma (EIA) is essential, given their divergent therapeutic and prognostic considerations. EIB has been increasingly recognized as a significant concern in pediatric athletes. Moreover, studies indicate a noteworthy prevalence of EIB in children with atopic predispositions, unveiling a potential link between allergic sensitivities and exercise-induced respiratory symptoms, underpinned by an inflammatory reaction caused by mechanical, environmental, and genetic factors. Holistic management of EIB in children necessitates a correct diagnosis and a combination of pharmacological and non-pharmacological interventions. This review delves into the latest evidence concerning EIB in the pediatric population, exploring its associations with atopy and sports, and emphasizing the appropriate diagnostic and therapeutic approaches by highlighting various clinical scenarios.
Collapse
Affiliation(s)
- Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy.
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
- Department of Health Sciences, University of Florence, 50139, Florence, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126, Verona, Italy
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Lucia Liotti
- Pediatric Unit, Department of Mother and Child Health, Salesi Children's Hospital, 60123, Ancona, Italy
| | - Carla Mastrorilli
- Pediatric and Emergency Department, Pediatric Hospital Giovanni XXIII, AOU Policlinic of Bari, 70126, Bari, Italy
| | - Francesca Saretta
- Pediatric Department, Latisana-Palmanova Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Stefania Arasi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Caminiti
- Allergy Unit, Department of Pediatrics, AOU Policlinico Gaetano Martino, 98124, Messina, Italy
| | - Mariannita Gelsomino
- Department of Life Sciences and Public Health, Pediatric Allergy Unit, University Foundation Policlinico Gemelli IRCCS, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Elio Novembre
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| |
Collapse
|
2
|
Ito K, Tajiri T, Nishiyama H, Kurokawa R, Yap JMG, Takeda N, Fukumitsu K, Kanemitsu Y, Fukuda S, Uemura T, Ohkubo H, Maeno K, Ito Y, Oguri T, Takemura M, Niimi A. Residual Dyspnea May Predict Small Airways Dysfunction and Poor Responsiveness to Single-Inhaler Triple Therapy in Asthmatic Patients. J Asthma Allergy 2022; 15:1561-1568. [PMID: 36348658 PMCID: PMC9637343 DOI: 10.2147/jaa.s381953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/28/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Recently, single-inhaler triple therapy (SITT) has demonstrated efficacy in patients with uncontrolled asthma who were symptomatic despite treatment with inhaled corticosteroids/long-acting β2 agonists. However, the characteristics of patients who benefit from SITT remain unclear in the real-world. The aim of this study was to examine the predictors of responsiveness to SITT in patients with asthma. PATIENTS AND METHODS A total of 45 patients with asthma who had regularly visited our respiratory clinic and were started on SITT from March 2019 to March 2021 were retrospectively analyzed. Patients' demographic characteristics, residual respiratory symptoms, type 2 biomarkers, and lung function before SITT were assessed from the patients' medical records. Predictors of responsiveness to four-week SITT were evaluated in these patients. The definition of responders was based on the physician-assessed global evaluation of treatment effectiveness. RESULTS Thirty-four (75%) of 45 patients were identified as responders to SITT. Non-responders showed significantly lower forced vital capacity (FVC) (%predicted) values, and complained of dyspnea more frequently than responders before SITT (p = 0.01 and p = 0.02, respectively). There were no significant differences in demographic characteristics and type 2 biomarkers between responders and non-responders. Clinical predictors of poor response to SITT were residual dyspnea (OR = 0.14, p = 0.02), low FVC (%predicted) values (OR = 1.05, p = 0.01), and FVC (%predicted) <80% (OR = 0.11, p = 0.02). Multivariate analysis showed that poor response to SITT was associated with residual dyspnea before SITT (OR = 0.14, p = 0.02). On the other hand, patients with residual dyspnea had significantly lower FEF25-75 (%predicted) values than patients without residual dyspnea before SITT (p = 0.04). CONCLUSION Residual dyspnea, reflecting small airways dysfunction, may predict poor responsiveness to short-term SITT in patients with asthma.
Collapse
Affiliation(s)
- Keima Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,Correspondence: Tomoko Tajiri, Email
| | - Hirono Nishiyama
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryota Kurokawa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jenifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,Department of Education and Research Center for Community Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Takemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,Department of Education and Research Center for Community Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Rasmussen SM, Hansen ESH, Backer V. Asthma in elite athletes - do they have Type 2 or non-Type 2 disease? A new insight on the endotypes among elite athletes. FRONTIERS IN ALLERGY 2022; 3:973004. [PMID: 36340019 PMCID: PMC9633848 DOI: 10.3389/falgy.2022.973004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Asthma and exercise-induced bronchoconstriction are highly prevalent in elite athletes compared with the general population. Some athletes have classic asthma with allergic sensitization; however, it seems that a proportion of athletes develop asthma as a result of several years of intensive training. It leads us to believe that asthma in athletes consists of at least two distinct endotypes - classic early-onset, Type 2 mediated asthma, and asthma with later onset caused by exercise which might be classified as non-Type 2 asthma. The purpose of this review is to evaluate the current literature on asthma in athletes focusing on inflammation and examine if asthma in athletes could be characterized as either Type 2- or non-Type 2 asthma.
Collapse
Affiliation(s)
- Søren Malte Rasmussen
- Medical Department, Nykøbing Falster Hospital, Nykøbing Falster, Denmark,Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Correspondence: Søren Malte Rasmussen
| | - Erik Sören Halvard Hansen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Hospital, Hvidovre, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Department of Otorhinolaryngology Head / Neck surgery and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
4
|
Management of Exercise-Induced Bronchoconstriction in Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2183-2192. [PMID: 32620432 DOI: 10.1016/j.jaip.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a phenomenon observed in asthma but is also seen in healthy individuals and frequently in athletes. High prevalence rates are observed in athletes engaged in endurance sports, winter sports, and swimming. The pathophysiology of EIB is thought to be related to hyperventilation, cold air, and epithelial damage caused by chlorine and fine particles in inspired air. Several diagnostic procedures can be used; however, the diagnosis of EIB based on self-reported symptoms is not reliable and requires an objective examination. The hyperosmolar inhalation test and eucapnic voluntary hyperpnea test, which involve indirect stimulation of the airway, are useful for the diagnosis of EIB. A short-acting β-agonist is the first choice for prevention of EIB, and an inhaled corticosteroid is essential for patients with asthma. Furthermore, treatment should accommodate antidoping requirements in elite athletes. Tailoring of the therapeutic strategy to the individual case and the prognosis after cessation of athletic activity are issues that should be clarified in the future.
Collapse
|
5
|
Ueno H, Koya T, Takeuchi H, Tsukioka K, Saito A, Kimura Y, Hayashi M, Watanabe S, Hasegawa T, Arakawa M, Kikuchi T. Cysteinyl Leukotriene Synthesis via Phospholipase A2 Group IV Mediates Exercise-induced Bronchoconstriction and Airway Remodeling. Am J Respir Cell Mol Biol 2020; 63:57-66. [PMID: 32182104 DOI: 10.1165/rcmb.2019-0325oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is well known that the prevalence of asthma is higher in athletes, including Olympic athletes, than in the general population. In this study, we analyzed the mechanism of exercise-induced bronchoconstriction by using animal models of athlete asthma. Mice were made to exercise on a treadmill for a total duration of 1 week, 3 weeks, or 5 weeks. We analyzed airway responsiveness, BAL fluid, lung homogenates, and tissue histology for each period. In mice that were treated (i.e., the treatment model), treatments were administered from the fourth to the fifth week. We also collected induced sputum from human athletes with asthma and analyzed the supernatants. Airway responsiveness to methacholine was enhanced with repeated exercise stimulation, although the cell composition in BAL fluid did not change. Exercise induced hypertrophy of airway smooth muscle and subepithelial collagen deposition. Cysteinyl-leukotriene (Cys-LT) levels were significantly increased with exercise duration. Montelukast treatment significantly reduced airway hyperresponsiveness (AHR) and airway remodeling. Expression of PLA2G4 (phospholipase A2 group IV) and leukotriene C4 synthase in the airway epithelium was upregulated in the exercise model, and inhibition of PLA2 ameliorated AHR and airway remodeling, with associated lower levels of Cys-LTs. The levels of Cys-LTs in sputum from athletes did not differ between those with and without sputum eosinophilia. These data suggest that AHR and airway remodeling were caused by repeated and strenuous exercise. Cys-LTs from the airway epithelium, but not inflammatory cells, may play an important role in this mouse model.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Takeuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Tsukioka
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Saito
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yosuke Kimura
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masachika Hayashi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Hasegawa
- Department of General Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan; and
| | - Masaaki Arakawa
- Niigata Institute for Health and Sports Medicine, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
6
|
Asthma and exercise-induced respiratory disorders in athletes. The position paper of the Polish Society of Allergology and Polish Society of Sports Medicine. Postepy Dermatol Alergol 2019; 36:1-10. [PMID: 30858772 PMCID: PMC6409872 DOI: 10.5114/ada.2019.82820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/19/2019] [Indexed: 11/27/2022] Open
Abstract
Exercise-induced respiratory symptoms describe acute airway narrowing that occurs as a result of exercise. It includes exercise-induced bronchoconstriction (EIB) and exercise-induced asthma (EIA) issues. To provide clinicians with practical guidelines, a multidisciplinary panel of stakeholders was convened to review the pathogenesis of EIB/EIA and to develop evidence-based guidelines for the diagnosis and treatment. Recommendations for the diagnosis and treatment of EIB were developed. High-intensity exercise in polluted environment (cold air, humidity, contamination, allergens) may increase the risk of EIB and asthma symptoms in athletes. Diagnostic procedures should include history taking, physical examination, atopy assessment and functional tests of the respiratory system. A strong recommendation was made for regular use of inhaled glucocorticosteroids and avoidance of short-acting β2-agonists as the only treatment. The treatment of asthma in athletes should always take into account current anti-doping regulations. This position paper reflects the currently available evidence.
Collapse
|
7
|
Kurokawa M, Koya T, Takeuchi H, Hayashi M, Sakagami T, Ishioka K, Gon Y, Hasegawa T, Kikuchi T. Association of upper and lower airway eosinophilic inflammation with response to omalizumab in patients with severe asthma. J Asthma 2018; 57:71-78. [PMID: 30489179 DOI: 10.1080/02770903.2018.1541357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: The anti-immunoglobulin E monoclonal antibody, omalizumab, is used to treat severe asthma and has the potential to ameliorate airway inflammation. However, the effect of omalizumab in ameliorating upper airway inflammation has not been fully elucidated. Objective: We investigated the association of upper and lower airway inflammation with the response to omalizumab treatment. Methods: We used the Global Evaluation of Treatment Effectiveness to assess the efficacy of omalizumab in treating 16 patients with severe asthma. We also investigated the symptom score, short-acting β-agonist inhaler use, pulmonary function, biomarkers, computed tomography scans, and nasal mucosa pathology at omalizumab initiation and after four months of treatment. Results: When the fraction of exhaled nitric oxide (FeNO) and the percentage of sputum eosinophil were used as indicators of lower airway inflammation, positive correlations were found between CD20 B-cell, mast cell, and eosinophil counts in the nasal mucosa. Improved asthma symptoms were observed in 12 of the 16 severe asthma cases. The FeNO and eosinophil levels in the nasal tissue, prior to the administration of omalizumab were predictors of the response to asthma treatment. Conclusions: These findings suggest heterogeneity among people with severe asthma. In addition, the phenotype associated with response to omalizumab, leading to improvement in asthma symptoms, comprises upper airway eosinophilia and high FeNO levels.
Collapse
Affiliation(s)
- Makoto Kurokawa
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Takeuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masachika Hayashi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kojiro Ishioka
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University of Medicine, Tokyo, Japan
| | - Takashi Hasegawa
- Department of General Medicine, Niigata University Medical and Dental Hospital, Japan, Niigata
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Asthma and exercise-induced respiratory symptoms in the athlete: new insights. Curr Opin Pulm Med 2018; 23:71-77. [PMID: 27820744 DOI: 10.1097/mcp.0000000000000339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Asthma and exercise-induced bronchoconstriction (EIB) are common in the athlete and can interfere with sport performances. In this review, we report recent findings on the prevalence, diagnosis and evaluation of these conditions, in addition to specific issues regarding their treatment and antidoping regulations. RECENT FINDINGS Recent studies confirmed the high prevalence of exercise-induced respiratory symptoms, asthma and EIB, in athletes and showed that these conditions are still underdiagnosed and undertreated. Recent studies highlight the suboptimal use of asthma medication in asthmatic and allergic athletes. Regarding the diagnosis and treatment, questions about the role and criteria for positivity of eucapnic voluntary hyperpnea test were raised. It was confirmed that there is a subgroup of athletes with poor response to asthma medication. Finally, regarding antidoping regulations, new methods and changes in criteria for urinary bronchodilator thresholds were suggested. SUMMARY Recent publications confirm that exercise-induced respiratory symptoms, asthma and EIB are common in athletes but often unrecognized and not optimally or successfully treated. It was suggested that current criteria for diagnostic bronchoprovocation test responses could be reassessed, as well as antidoping criteria for β2-agonists urinary levels. There is a need for more research on prevention of airways dysfunction in athletes, identification of different asthma phenotypes and the benefits of standard asthma medication in this population.
Collapse
|
9
|
Couto M, Kurowski M, Moreira A, Bullens DMA, Carlsen K, Delgado L, Kowalski ML, Seys SF. Mechanisms of exercise-induced bronchoconstriction in athletes: Current perspectives and future challenges. Allergy 2018; 73:8-16. [PMID: 28599081 DOI: 10.1111/all.13224] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 01/08/2023]
Abstract
The evidence of exercise-induced bronchoconstriction (EIB) without asthma (EIBwA ) occurring in athletes led to speculate about different endotypes inducing respiratory symptoms within athletes. Classical postulated mechanisms for bronchial obstruction in this population include the osmotic and the thermal hypotheses. More recently, the presence of epithelial injury and inflammation in the airways of athletes was demonstrated. In addition, neuronal activation has been suggested as a potential modulator of bronchoconstriction. Investigation of these emerging mechanisms is of major importance as EIB is a significant problem for both recreational and competitive athletes and is the most common chronic condition among Olympic athletes, with obvious implications for their competing performance, health and quality of life. Hereby, we summarize the latest achievements in this area and identify the current gaps of knowledge so that future research heads toward better defining the etiologic factors and mechanisms involved in development of EIB in elite athletes as well as essential aspects to ultimately propose preventive and therapeutic measures.
Collapse
Affiliation(s)
- M. Couto
- Allergy Unit Hospital & Instituto CUF Porto Porto Portugal
| | - M. Kurowski
- Department of Immunology, Rheumatology and Allergy Healthy Ageing Research Centre Medical University of Łódź Łódź Poland
| | - A. Moreira
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de Imunoalergologia Centro Hospitalar São João E.P.E. Porto Portugal
| | - D. M. A. Bullens
- Laboratory of Pediatric Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Division of Pediatrics UZ Leuven Leuven Belgium
| | - K.‐H. Carlsen
- Institute for Clinical Medicine University of Oslo Oslo Norway
| | - L. Delgado
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de Imunoalergologia Centro Hospitalar São João E.P.E. Porto Portugal
| | - M. L. Kowalski
- Department of Immunology, Rheumatology and Allergy Healthy Ageing Research Centre Medical University of Łódź Łódź Poland
| | - S. F. Seys
- Laboratory of Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
| |
Collapse
|
10
|
Tsukioka K, Koya T, Ueno H, Hayashi M, Sakagami T, Hasegawa T, Arakawa M, Suzuki E, Kikuchi T. Phenotypic analysis of asthma in Japanese athletes. Allergol Int 2017; 66:550-556. [PMID: 28298259 DOI: 10.1016/j.alit.2017.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/29/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Asthma in athlete populations such as Olympic athletes has various pathogeneses. However, few reports are available on the features of asthma in the athlete population in clinical practice. In this study, we focused on classifying asthma in Japanese athlete population. METHODS We performed a cluster analysis of data from pulmonary function tests and clinical biomarkers before administering inhaled corticosteroids (ICS) therapy in athlete population of individuals diagnosed with asthma (n = 104; male, 76.9%; median age, 16.0 years), based on respiratory symptoms and positive data on methacholine provocation tests. We also compared backgrounds, sports types, and treatments between clusters. RESULTS Three clusters were identified. Cluster 1 (32%) comprised athletes with a less atopic phenotype and normal pulmonary function. Cluster 2 (44%) comprised athletes with a less atopic phenotype and lower percent predicted forced expiratory volume in 1 s (%FEV1) values, despite less symptomatic state. Cluster 3 (24%) comprised athletes with a strong atopic phenotype such as high eosinophil count in the blood and total serum immunoglobulin E level. After treatment with ICS or ICS plus long-acting β-adrenergic receptor agonist for 6-12 months, %FEV1 values were significantly improved in Cluster 2 athletes, whereas Cluster 3 athletes had a significant decrease in the fraction of exhaled nitric oxide compared to pretreatment values. CONCLUSIONS These data suggest three clusters exist in Japanese athlete population with asthma. Between the clusters, the characteristics differed with regard to symptoms, atopic features, and lower %FEV1 values. The pathogeneses between clusters may vary depending on the inflammation type and airway hyperresponsiveness.
Collapse
|
11
|
Thevis M, Kuuranne T, Walpurgis K, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2016; 8:7-29. [PMID: 26767774 DOI: 10.1002/dta.1928] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
The aim of improving anti-doping efforts is predicated on several different pillars, including, amongst others, optimized analytical methods. These commonly result from exploiting most recent developments in analytical instrumentation as well as research data on elite athletes' physiology in general, and pharmacology, metabolism, elimination, and downstream effects of prohibited substances and methods of doping, in particular. The need for frequent and adequate adaptations of sports drug testing procedures has been incessant, largely due to the uninterrupted emergence of new chemical entities but also due to the apparent use of established or even obsolete drugs for reasons other than therapeutic means, such as assumed beneficial effects on endurance, strength, and regeneration capacities. Continuing the series of annual banned-substance reviews, literature concerning human sports drug testing published between October 2014 and September 2015 is summarized and reviewed in reference to the content of the 2015 Prohibited List as issued by the World Anti-Doping Agency (WADA), with particular emphasis on analytical approaches and their contribution to enhanced doping controls.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories, Höyläämötie 14, 00380, Helsinki, Finland
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|