Koizumi Y, Nagase H, Nakajima T, Kawamura M, Ohta K. Toll-like receptor 3 ligand specifically induced bronchial epithelial cell death in caspase dependent manner and functionally upregulated Fas expression.
Allergol Int 2016;
65 Suppl:S30-7. [PMID:
27321649 DOI:
10.1016/j.alit.2016.05.006]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND
Viral infections are the most common cause of asthma exacerbation. Virally infected epithelial cells undergo apoptosis. Although in healthy conditions, apoptosis may have a host-defensive role in limiting virus spread, this process may have a detrimental effect on damaged epithelium in asthma. Toll-like receptors (TLRs) are the receptors for various pathogens, and viruses possess several components that can activate TLR3, TLR4, and TLR7/8. However, as it has not been determined as to which component is responsible for virus-induced epithelial cell apoptosis, we comprehensively analyzed the effects of all TLR ligands on apoptosis.
METHODS
BEAS-2B cells or primary cultured human bronchial epithelial cells (PBECs) were stimulated by TLR 2, 3, 4, 5, 7/8, and 9 ligands and cell death was analyzed by flow cytometry. Chemokine generations induced by these ligands were also analyzed.
RESULTS
The TLR3 ligand polyinosinic-polycytidylic acid (poly I:C) specifically induced chemokine generation and apoptosis, while other TLR ligands including those for TLR5, 7/8, and 9 had no effect. The response to poly I:C had two phases, which included rapid secretion of chemokines and subsequent apoptosis in a later phase. Poly I:C induced apoptosis in a caspase-dependent manner and functionally upregulated the expression of Fas.
CONCLUSIONS
Previous findings indicating that viruses induced caspase-dependent death and upregulated Fas expression were reproduced by poly I:C, suggesting the central role of dsRNA/TLR3 in virus-induced apoptosis. Since these processes may have detrimental effects on pre-existing epithelial damage, the dsRNA/TLR3 pathway may be potential novel treatment target for virus-induced exacerbation of asthma.
Collapse