1
|
Wei SM, Fei JX, Tao F, Pan HL, Shen Q, Wang L, Wu YJ, Zhou L, Zhu SX, Liao WB, Ji H, Xin ZL. Anti-CD27 Antibody Potentiates Antitumor Effect of Dendritic Cell-Based Vaccine in Prostate Cancer-Bearing Mice. Int Surg 2015; 100:155-63. [PMID: 25594656 PMCID: PMC4301282 DOI: 10.9738/intsurg-d-14-00147.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the current study, we investigated whether anti-CD27 monoclonal antibody can enhance the antitumor efficacy of a dendritic cell-based vaccine in prostate cancer-bearing mice. The overall therapeutic effect of a dendritic cell-based vaccine for prostate cancer remains moderate. A prostate cancer model was established by subcutaneous injection of RM-1 tumor cells into male C57BL/6 mice on day 0. After 4 days, tumor-bearing mice were treated with RM-1 tumor lysate-pulsed dendritic cells (i.e., dendritic cell-based vaccine), anti-CD27 monoclonal antibody, or a combination of RM-1 tumor lysate-pulsed dendritic cells with anti-CD27 monoclonal antibody. Mice were killed at 21 days after tumor cell implantation. Tumor size was measured for assessment of antitumor effect. Spleens were collected for analysis of antitumor immune responses. The antitumor immune responses were evaluated by measuring the proliferation and activity of T cells, which have the ability to kill tumor cells. The combination therapy with RM-1 tumor lysate-pulsed dendritic cells and anti-CD27 antibody significantly enhanced T-cell proliferation and activity, and significantly reduced tumor growth, compared with monotherapy with RM-1 tumor lysate-pulsed dendritic cells or anti-CD27 antibody. Our results suggest that combined treatment can strengthen antitumor efficacy by improving T-cell proliferation and activity.
Collapse
Affiliation(s)
- Si-Ming Wei
- Department of Surgery, Zhejiang Medical College, Hangzhou City, China
- Department of Surgery, Wenzhou Medical University, Wenzhou City, China
| | - Jin-Xuan Fei
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Feng Tao
- Department of Pharmacology, Zhejiang Medical College, Hangzhou City, China
| | - Hang-Li Pan
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Qing Shen
- Department of Surgery, Zhejiang Medical College, Hangzhou City, China
| | - Li Wang
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Yu-Jia Wu
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Li Zhou
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Sheng-Xin Zhu
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Wei-Bin Liao
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Hua Ji
- Department of Basic Medicine, Zhejiang Medical College, Hangzhou City, China
| | - Zhao-Liang Xin
- Department of Surgery, Zhejiang Medical College, Hangzhou City, China
- Department of Surgery, Wenzhou Medical University, Wenzhou City, China
| |
Collapse
|