1
|
Garriga-Baraut T, Labrador-Horrillo M, Tena M, Linares CD, Esteso-Hontoria O, Pedemonte C, Basagaña-Torrento M, Miquel S, Padró-Casas C, Campa-Falcon N, Ferré-Ybarz L, Gázquez-Garcia V, Muñoz-Cano R, Viñas M, Farrarons L, Baltasar-Dragó M, Cortés N, Asensio O, Bartra J, Belmonte J, Bobolea I, Raga E, Moncín MSM. A real-life ImmunoCAT study: impact of molecular diagnosis through ImmunoCAP TM ISAC 112 on immunotherapy prescription in pollen-polysensitized patients in Catalonia, Spain. Allergol Immunopathol (Madr) 2024; 52:21-29. [PMID: 38970261 DOI: 10.15586/aei.v52i4.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/05/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Molecular diagnosis in allergology helps to identify multiple allergenic molecules simultaneously. The use of purified and/or recombinant allergens increases the accuracy of individual sensitization profiles in allergic patients. OBJECTIVE To assess the impact of molecular diagnosis through the ImmunoCAPTM ISAC 112 microarray on etiological diagnosis and specific immunotherapy (SIT) prescription. This was compared to the use of conventional diagnoses in pediatric, adolescent, and young adult patients with rhinitis or rhinoconjunctivitis and/or allergic asthma, sensitized to three or more pollen allergens of different botanical species. METHODS A multicenter, prospective, observational study was conducted in patients aged 3-25 years who received care at the Allergology service of 14 hospitals in Catalonia from 2017 to 2020. Allergology diagnosis was established based on the patient's clinical assessment and the results of the skin prick test and specific immunoglobulin E assays. Subsequently, molecular diagnosis was conducted using ImmunoCAPTM ISAC® 112 to recombinant and/or purified allergen components. RESULTS A total of 109 patients were included; 35 (32.1%) were pediatric patients and 74 (67.9%) were adolescents or young adults (mean age: 18 years), with 58.0% being females. A change of 51.0% was observed in SIT prescription following molecular etiological diagnosis by means of a multi-parameter microarray. CONCLUSIONS Molecular diagnosis by means of multi-parameter tests increases the accuracy of etiological diagnosis and helps to define an accurate composition of SIT.
Collapse
Affiliation(s)
- Teresa Garriga-Baraut
- Pediatric Allergy Unit, Pediatric Department, Vall d'Hebron University Hospital, Barcelona, Spain;
| | - Moises Labrador-Horrillo
- Pediatric Allergy Unit, Pediatric Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mercé Tena
- Thermo Fisher Scientific, Barcelona, Spain
| | | | | | - Carlos Pedemonte
- Pediatric Allergy Department, Hospital de Nens de Barcelona, Barcelona, Spain
| | | | - Sira Miquel
- Allergy Department, Germans Trias i Pujol Hospital, Badalona, Spain
| | | | - Núria Campa-Falcon
- Pediatric Allergy Unit, Pediatric Medicine Service, Parc Taulí Hospital, Sabadell, Spain
| | | | | | | | - Marta Viñas
- Allergy Department, Terrassa Hospital, Terrrassa, Spain
| | - Lidia Farrarons
- Allergy Department, Fundació Althaia Hospital, Manresa, Spain
| | | | - Núria Cortés
- Pediatric Allergy Department, Mútua de Terrassa Hospital, Terrassa, Spain
| | - Oscar Asensio
- Pediatric Allergy Unit, Pediatric Medicine Service, Parc Taulí Hospital, Sabadell, Spain
| | - Joan Bartra
- Allergy Department, Clínic Hospital, Barcelona, Spain
| | | | - Irina Bobolea
- Allergy Department, Clínic Hospital, Barcelona, Spain
| | - Esperanza Raga
- Allergy Department, Centro Médico Téknon, Barcelona, Spain
| | | |
Collapse
|
2
|
Đurašinović T, Lopandić Z, Protić-Rosić I, Ravnsborg T, Blagojević G, Burazer L, Jensen ON, Gavrović-Jankulović M. Utilizing the Banana S-Adenosyl-L-Homocysteine Hydrolase Allergen to Identify Cross-Reactive IgE in Ryegrass-, Latex-, and Kiwifruit-Allergic Individuals. Int J Mol Sci 2024; 25:5800. [PMID: 38891986 PMCID: PMC11171677 DOI: 10.3390/ijms25115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.
Collapse
Affiliation(s)
- Tatjana Đurašinović
- Institute of Medical Biochemistry, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Zorana Lopandić
- Institute for Chemistry in Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | | | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, University of South Denmark, 5230 Odense, Denmark
| | - Gordan Blagojević
- Institute of Virology, Vaccines and Sera “Torlak”, 11000 Belgrade, Serbia; (G.B.); (L.B.)
| | - Lidija Burazer
- Institute of Virology, Vaccines and Sera “Torlak”, 11000 Belgrade, Serbia; (G.B.); (L.B.)
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, University of South Denmark, 5230 Odense, Denmark
| | | |
Collapse
|
3
|
Canonica GW, Varricchi G, Paoletti G, Heffler E, Virchow JC. Advancing precision medicine in asthma: Evolution of treatment outcomes. J Allergy Clin Immunol 2023; 152:835-840. [PMID: 37531979 DOI: 10.1016/j.jaci.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The article discusses the historical evolution of asthma treatment and highlights recent advancements in personalized medicine, specifically the use of biologics in severe asthma therapy and its potential combination with allergen immunotherapy (AIT). One of the major breakthroughs of biologics is their potential effect on airway remodeling, a crucial aspect of asthma chronicity. The article introduces the concept of disease-modifying antiasthmatic drugs, which aim to modify the course of asthma and possibly modulate or prevent airway remodeling. Furthermore, the critical importance of patient-centered outcome measures to evaluate the efficacy and effectiveness of asthma treatments is emphasized, with the innovative concept of asthma remission introduced as a potential outcome. Recent studies suggest that AIT can be used as an additional therapy to biologic agents for the treatment of allergic asthma. The combination of these treatments has been shown to induce improved clinical outcomes. However, AIT is actually not recommended for use in patients with severe asthma, but encouraging results from studies investigating the combined use of AIT and biologics indicate a novel approach to exploring these treatment modalities. In conclusion, the introduction of biologics and AIT has changed the scenario of respiratory allergy treatment, from a "one size fits all" approach to embracing "individual treatments."
Collapse
Affiliation(s)
- Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy; Asthma & Allergy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; World Allergy Organization (WAO) Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy; Asthma & Allergy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy; Asthma & Allergy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, Italy
| | | |
Collapse
|
4
|
Özuygur Ermis SS, Norouzi A, Borres MP, Basna R, Ekerljung L, Malmhäll C, Goksör E, Wennergren G, Rådinger M, Lötvall J, Kankaanranta H, Nwaru BI. Sensitization patterns to cat molecular allergens in subjects with allergic sensitization to cat dander. Clin Transl Allergy 2023; 13:e12294. [PMID: 37632243 PMCID: PMC10422092 DOI: 10.1002/clt2.12294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The use of molecular allergology has increasingly become common in the diagnosis and management of allergic diseases. However, there is still a lack of data on cat molecular allergens in adults. Therefore, we aimed to uncover the sensitization patterns to cat molecular allergens. METHODS Participants were recruited from the West Asthma Sweden Study, a population-based study enriched with asthma subjects aged 16-75 years. Of 1872, 361 individuals were positive for cat dander immunoglobulin E and were further analysed for cat molecular allergens (Fel d 1/2/4/7). Sensitization patterns were classified as monosensitization, polysensitization, and concomitant sensitization, and were related to demographic and clinical measurements. RESULTS Among cat-sensitized subjects, 84.2% were sensitized to secretoglobin, while 42.4% were sensitized to lipocalins. Nearly half of the subjects were monosensitized to Fel d 1. Polysensitization was observed in 20.2%, and concomitant sensitization to protein families was seen in 7.2%. Asthma prevalence, cat exposure, and rural living were associated with poly- and concomitant sensitization to protein families. Concomitant sensitization to single allergens was more common in those with asthma than in those without, while concomitant sensitization to both Fel d 1 and Fel d 4 was the most common pattern in individuals with asthma. Sensitization patterns also differed according to cat ownership and the degree of urbanization. CONCLUSION Sensitization to molecular allergens was observed in 90.9% of cat-sensitized subjects and showed variations across participants' background characteristics and the presence of asthma. Identification of sensitization patterns to cat allergens might provide better characterization of cat-allergic subjects.
Collapse
Affiliation(s)
- Saliha Selin Özuygur Ermis
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Magnus P. Borres
- ImmunoDiagnosticsThermo Fisher ScientificUppsalaSweden
- Department of Maternal and Child HealthUppsala UniversityUppsalaSweden
| | - Rani Basna
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Linda Ekerljung
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Malmhäll
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Emma Goksör
- Department of PediatricsQueen Silvia Children's HospitalUniversity of GothenburgGothenburgSweden
| | - Göran Wennergren
- Department of PediatricsQueen Silvia Children's HospitalUniversity of GothenburgGothenburgSweden
| | - Madeleine Rådinger
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Lötvall
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Hannu Kankaanranta
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
- Department of Respiratory MedicineSeinäjoki Central HospitalSeinäjokiFinland
| | - Bright I. Nwaru
- Krefting Research CentreInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineInstitute of MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Lis K, Bartuzi Z. Selected Technical Aspects of Molecular Allergy Diagnostics. Curr Issues Mol Biol 2023; 45:5481-5493. [PMID: 37504263 PMCID: PMC10378047 DOI: 10.3390/cimb45070347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Diagnosis of allergic diseases is a complex, multi-stage process. It often requires the use of various diagnostic tools. The in vitro diagnostics (IVD), which includes various laboratory tests, is one of the stages of this process. Standard laboratory tests include the measurement of the serum concentration of specific immunoglobulin E (sIgE) for selected allergens, full allergen extracts and/or single allergen components (molecules). The measurement of IgE sIgE to the allergen components is called molecular allergy diagnosis. During the standard laboratory diagnostic process, various models of immunochemical tests are used, which enable the measurement of sIgE for single allergens (one-parameter tests, singleplex) or IgE specific for many different allergens (multi-parameter tests, multiplex) in one test. Currently, there are many different test kits available, validated for IVD, which differ in the method type and allergen profile. The aim of the manuscript is to present various technical aspects related to modern allergy diagnostics, especially in the area of molecular allergy diagnostics.
Collapse
Affiliation(s)
- Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-168 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-168 Bydgoszcz, Poland
| |
Collapse
|
6
|
Allergic March in Children: The Significance of Precision Allergy Molecular Diagnosis (PAMD@) in Predicting Atopy Development and Planning Allergen-Specific Immunotherapy. Nutrients 2023; 15:nu15040978. [PMID: 36839334 PMCID: PMC9961516 DOI: 10.3390/nu15040978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The allergic march is a progression of naturally occurring symptoms whose nature changes with age. The classic allergic march typically begins in infancy and manifests in the form of atopic dermatitis and food allergy. As immune tolerance develops over time, these conditions may resolve by the age of 3-5 years; however, they may evolve into allergic rhinitis and bronchial asthma. Traditional diagnostic assessments, such as skin prick testing or serum allergen-specific immunoglobulin E (sIgE) level testing, are conducted to introduce effective treatment. Recent years saw the emergence of precision allergy molecular diagnosis (PAMD@), which assesses sIgE against allergenic molecules. This new technology helps more accurately evaluate the patient's allergy profile, which helps create more precise dietary specifications and personalize allergen-specific immunotherapy. This review presents possible predictions regarding the allergic march and the means of controlling it based on PAMD@ results.
Collapse
|
7
|
Matysiak J. Modern diagnostics in IgE-mediated cow’s milk allergy. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cow's milk allergy (CMA) is the most common food allergy in infants and young children. Allergic reactions can vary from mild to severe, like an anaphylactic shock. In case of CMA diagnosis suspicion skin prick tests (SPT), immunoassays of specific IgE (sIgE) in blood serum (in vitro tests) and oral food challenge (OFC) tests can be performed. SPT wheal diameter and the level of serum specific IgE to milk do not correlate with severity of clinical symptoms, while procedure of OFC is often difficult or even imposible in practice. Therefore component resolved-diagnostics (CRD) tests are a new diagnostic tool, which allows for a better correlation of laboratory test results with the observed clinical symptoms and indicate the triggering allergens.
Collapse
|
8
|
Panaitescu C, Haidar L, Buzan MR, Grijincu M, Spanu DE, Cojanu C, Laculiceanu A, Bumbacea R, Agache IO. Precision medicine in the allergy clinic: the application of component resolved diagnosis. Expert Rev Clin Immunol 2022; 18:145-162. [PMID: 35078387 DOI: 10.1080/1744666x.2022.2034501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION A precise diagnosis is key for the optimal management of allergic diseases and asthma. In vivo or in vitro diagnostic methods that use allergen extracts often fail to identify the molecules eliciting the allergic reactions. AREAS COVERED Component-resolved diagnosis (CRD) has solved most of the limitations of extract-based diagnostic procedures and is currently valuable tool for the precision diagnosis in the allergy clinic, for venom and food allergy, asthma, allergic rhinitis, and atopic dermatitis. Its implementation in daily practice facilitates: a) the distinction between genuine multiple sensitizations and cross-reactive sensitization in polysensitized patients; b) the prediction of a severe, systemic reaction in food or insect venom allergy; c) the optimal selection of allergen immunotherapy based on the patient sensitization profile. This paper describes its main advantages and disadvantages, cost-effectiveness and future perspectives. EXPERT OPINION The diagnostic strategy based on CRD is part of the new concept of precision immunology, which aims to improve the management of allergic diseases.
Collapse
Affiliation(s)
- Carmen Panaitescu
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer - OncoGen, "Pius Brinzeu" Clinical Emergency Hospital, Timisoara, Romania
| | - Laura Haidar
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Maria Roxana Buzan
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer - OncoGen, "Pius Brinzeu" Clinical Emergency Hospital, Timisoara, Romania
| | - Manuela Grijincu
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer - OncoGen, "Pius Brinzeu" Clinical Emergency Hospital, Timisoara, Romania
| | | | - Catalina Cojanu
- Transylvania University Brasov - Faculty of Medicine, Brasov
| | | | - Roxana Bumbacea
- Department of Allergy, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
| | | |
Collapse
|
9
|
Incorvaia C, Al‐Ahmad M, Ansotegui IJ, Arasi S, Bachert C, Bos C, Bousquet J, Bozek A, Caimmi D, Calderón MA, Casale T, Custovic A, De Blay F, Demoly P, Devillier P, Didier A, Fiocchi A, Fox AT, Gevaert P, Gomez M, Heffler E, Ilina N, Irani C, Jutel M, Karagiannis E, Klimek L, Kuna P, O'Hehir R, Kurbacheva O, Matricardi PM, Morais‐Almeida M, Mosges R, Novak N, Okamoto Y, Panzner P, Papadopoulos NG, Park H, Passalacqua G, Pawankar R, Pfaar O, Schmid‐Grendelmeier P, Scurati S, Tortajada‐Girbés M, Vidal C, Virchow JC, Wahn U, Worm M, Zieglmayer P, Canonica GW. Personalized medicine for allergy treatment: Allergen immunotherapy still a unique and unmatched model. Allergy 2021; 76:1041-1052. [PMID: 32869882 DOI: 10.1111/all.14575] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
Abstract
The introduction of personalized medicine (PM) has been a milestone in the history of medical therapy, because it has revolutionized the previous approach of treating the disease with that of treating the patient. It is known today that diseases can occur in different genetic variants, making specific treatments of proven efficacy necessary for a given endotype. Allergic diseases are particularly suitable for PM, because they meet the therapeutic success requirements, including a known molecular mechanism of the disease, a diagnostic tool for such disease, and a treatment blocking the mechanism. The stakes of PM in allergic patients are molecular diagnostics, to detect specific IgE to single-allergen molecules and to distinguish the causative molecules from those merely cross-reactive, pursuit of patient's treatable traits addressing genetic, phenotypic, and psychosocial features, and omics, such as proteomics, epi-genomics, metabolomics, and breathomics, to forecast patient's responsiveness to therapies, to detect biomarker and mediators, and to verify the disease control. This new approach has already improved the precision of allergy diagnosis and is likely to significantly increase, through the higher performance achieved with the personalized treatment, the effectiveness of allergen immunotherapy by enhancing its already known and unique characteristics of treatment that acts on the causes.
Collapse
Affiliation(s)
| | - Mona Al‐Ahmad
- Microbiology Department Faculty of Medicine Kuwait University Kuwait
- Drug Allergy Unit Department of Allergy Al‐Rashed Allergy Center Kuwait
| | | | - Stefania Arasi
- Department of Allergy Bambino Gesu' Childrens' Hospital IRCCS Rome Italy
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Dept Ghent University Hospital Ghent Belgium
- Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| | - Catherine Bos
- Stallergenes Greer Medical Affairs Department Antony France
| | - Jean Bousquet
- University Hospital Montpellier France – MACVIA‐France Montpellier France
| | - Andrzéj Bozek
- Clinical Department of Internal Disease, Dermatology and Allergology Medical University of Silesia Katowice Poland
| | - Davide Caimmi
- Department of Pulmonology and Addictology Arnaud de Villeneuve Hospital Montpellier University Montpellier France
| | - Moises A. Calderón
- Imperial College London – National Heart and Lung Institute Royal Brompton Hospital NHS London UK
| | - Thomas Casale
- Division of Allergy/Immunology University of South Florida Tampa FL USA
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy Institute of Inflammation and Repair University of Manchester and University Hospital of South Manchester Manchester UK
| | - Frédéric De Blay
- Allergy Division Chest Diseases Department Strasbourg University Hospital Strasbourg France
| | - Pascal Demoly
- Department of Pulmonology and Addictology Arnaud de Villeneuve Hospital Montpellier University Montpellier France
- Sorbonne Université UMR‐S 1136 INSERM IPLESP EPAR Team Paris France
| | - Philippe Devillier
- Laboratoire de Recherche en Pharmacologie Respiratoire Pôle des Maladies des Voies Respiratoires Hôpital Foch Université Paris‐Saclay Suresnes France
| | - Alain Didier
- Respiratory Disease Dept Larrey Hospital University Hospital of Toulouse Paul Sabatier University Toulouse France
| | - Alessandro Fiocchi
- Department of Allergy Bambino Gesu' Childrens' Hospital IRCCS Rome Italy
| | - Adam T. Fox
- Department of Paediatric Allergy Guy's & St Thomas' Hospitals NHS Foundation Trust London UK
| | - Philippe Gevaert
- Upper Airways Research Laboratory ENT Dept Ghent University Hospital Ghent Belgium
| | | | - Enrico Heffler
- Personalized Medicine, Asthma & Allergy – Humanitas Clinical and Research Center IRCCS Rozzano Italy
- Department of Biomedical Science Humanitas University Pieve Emanuele Italy
| | - Natalia Ilina
- Federal Institute of Immunology of Russia Moscow Russia
| | - Carla Irani
- Department of Internal Medicine and Clinical Immunology Faculty of Medicine Hotel Dieu de France Hospital Saint Joseph University Beirut Lebanon
| | - Marek Jutel
- Department of Clinical Immunology Wrocław Medical University Wrocław Poland
| | | | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy Barlicki University Hospital Medical University of Lodz Lodz Poland
| | - Robin O'Hehir
- Alfred Hospital and Monash University Melbourne Australia
| | - Oxana Kurbacheva
- National Research Center – Institute of Immunology Federal Medical‐Biological Agency of Russia Moscow Russia
| | - Paolo M. Matricardi
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | - Mario Morais‐Almeida
- Immunoallergy Department of CUF‐Descobertas Hospital Lisbon Portugal
- CUF‐Infante Santo Hospital Lisbon Portugal
| | - Ralph Mosges
- Faculty of Medicine Institute of Medical Statistics and Computational Biology University of Cologne Cologne Germany
- CRI – Clinical Research International Ltd. Cologne Germany
| | - Natalija Novak
- Department of Dermatology and Allergy University Hospital Bonn Bonn Germany
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology Chiba University Hospital Chiba Japan
| | - Petr Panzner
- Department of Immunology and Allergology Faculty of Medicine in Pilsen Charles University in Prague Pilsen Czech Republic
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine Royal Manchester Children's Hospital University of Manchester Manchester UK
- Allergy Department 2nd Pediatric Clinic Athens General Children's Hospital "P&A Kyriakou" University of Athens Athens Greece
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases Ospedale Policlino San Martino – University of Genoa Genoa Italy
| | - Ruby Pawankar
- Department of Pediatrics Nippon Medical School Tokyo Japan
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | | | - Silvia Scurati
- Stallergenes Greer Medical Affairs Department Antony France
| | - Miguel Tortajada‐Girbés
- Pediatric Pulmonology and Allergy Unit Department of Pediatrics Dr. Peset University Hospital Valencia Spain
- Department of Pediatrics, Obstetrics and Gynecology University of Valencia Valencia Spain
- IVI Foundation Valencia Spain
| | - Carmen Vidal
- Allergy Service Complejo Hospitalario Universitario de Santiago Santiago de Compostela Spain
| | - J. Christian Virchow
- Department of Pneumology/Intensive Care Medicine University of Rostock Rostock Germany
| | - Ulrich Wahn
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | - Margitta Worm
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | | | - Giorgio W. Canonica
- Personalized Medicine, Asthma & Allergy – Humanitas Clinical and Research Center IRCCS Rozzano Italy
- Department of Biomedical Science Humanitas University Pieve Emanuele Italy
| |
Collapse
|
10
|
Huang HJ, Campana R, Akinfenwa O, Curin M, Sarzsinszky E, Karsonova A, Riabova K, Karaulov A, Niespodziana K, Elisyutina O, Fedenko E, Litovkina A, Smolnikov E, Khaitov M, Vrtala S, Schlederer T, Valenta R. Microarray-Based Allergy Diagnosis: Quo Vadis? Front Immunol 2021; 11:594978. [PMID: 33679689 PMCID: PMC7928321 DOI: 10.3389/fimmu.2020.594978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
More than 30% of the world population suffers from allergy. Allergic individuals are characterized by the production of immunoglobulin E (IgE) antibodies against innocuous environmental allergens. Upon allergen recognition IgE mediates allergen-specific immediate and late-phase allergic inflammation in different organs. The identification of the disease-causing allergens by demonstrating the presence of allergen-specific IgE is the key to precision medicine in allergy because it allows tailoring different forms of prevention and treatment according to the sensitization profiles of individual allergic patients. More than 30 years ago molecular cloning started to accelerate the identification of the disease-causing allergen molecules and enabled their production as recombinant molecules. Based on recombinant allergen molecules, molecular allergy diagnosis was introduced into clinical practice and allowed dissecting the molecular sensitization profiles of allergic patients. In 2002 it was demonstrated that microarray technology allows assembling large numbers of allergen molecules on chips for the rapid serological testing of IgE sensitizations with small volumes of serum. Since then microarrayed allergens have revolutionized research and diagnosis in allergy, but several unmet needs remain. Here we show that detection of IgE- and IgG-reactivity to a panel of respiratory allergens microarrayed onto silicon elements is more sensitive than glass-based chips. We discuss the advantages of silicon-based allergen microarrays and how this technology will allow addressing hitherto unmet needs in microarray-based allergy diagnosis. Importantly, it described how the assembly of silicon microarray elements may create different microarray formats for suiting different diagnostic applications such as quick testing of single patients, medium scale testing and fully automated large scale testing.
Collapse
Affiliation(s)
- Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Eszter Sarzsinszky
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Antonina Karsonova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ksenja Riabova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Olga Elisyutina
- Department of Allergology and Clinical Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Elena Fedenko
- Department of Allergology and Clinical Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Alla Litovkina
- Department of Allergology and Clinical Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Evgenii Smolnikov
- Department of Allergology and Clinical Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Musa Khaitov
- Department of Allergology and Clinical Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Schlederer
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Allergology and Clinical Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
11
|
Millen JLM, Willems I, Slingers G, Raes M, Koppen G, Langie SAS. Diagnostic characterization of respiratory allergies by means of a multiplex immunoassay. Clin Exp Immunol 2020; 203:183-193. [PMID: 33179267 PMCID: PMC7806420 DOI: 10.1111/cei.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
Abstract
Allergic sensitization is commonly assessed in patients by performing the skin prick test (SPT) or determining specific immunoglobulin (IgE) levels in blood samples with the ImmunoCAP™ assay, which measures each allergen and sample separately. This paper explores the possibility to investigate respiratory allergies with a high throughput method, the Meso Scale Discovery (MSD) multiplex immunoassay, measuring IgE levels in low volumes of blood. The MSD multiplex immunoassay, developed and optimized with standards and allergens from Radim Diagnostics, was validated against the SPT and the ImmunoCAP assay. For 18 adults (15 respiratory allergy patients and three controls), blood collection and the SPT were performed within the same hour. Pearson correlations and Bland-Altman analysis showed high comparability of the MSD multiplex immunoassay with the SPT and the ImmunoCAP assay, except for house dust mite. The sensitivity of the MSD multiplexed assay was ≥78% for most allergens compared to the SPT and ImmunoCAP assay. Additionally, the specificity of the MSD multiplex immunoassay was ≥ 87% - the majority showing 100% specificity. Only the rye allergen had a low specificity when compared to the SPT, probably due to cross-reactivity. The reproducibility of the MSD multiplex immunoassay, assessed as intra- and interassay reproducibility and biological variability between different sampling moments, showed significantly high correlations (r = 0·943-1) for all tested subjects (apart from subject 13; r = 0·65-0·99). The MSD multiplex immunoassay is a reliable method to detect specific IgE levels against respiratory allergens in a multiplexed and high-throughput manner, using blood samples as small as from a finger prick.
Collapse
Affiliation(s)
- J L M Millen
- VITO - Health, Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - I Willems
- VITO - Health, Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - G Slingers
- VITO - Health, Mol, Belgium.,Faculty of Medicine and Life Sciences, UHasselt, LCRC, Diepenbeek, Belgium.,Paediatrics, Jessa Hospital, Hasselt, Belgium
| | - M Raes
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Diepenbeek, Belgium.,Paediatrics, Jessa Hospital, Hasselt, Belgium
| | | | - S A S Langie
- VITO - Health, Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
12
|
A WAO - ARIA - GA 2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ J 2020; 13:100091. [PMID: 32180890 PMCID: PMC7062937 DOI: 10.1016/j.waojou.2019.100091] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precision allergy molecular diagnostic applications (PAMD@) is increasingly entering routine care. Currently, more than 130 allergenic molecules from more than 50 allergy sources are commercially available for in vitro specific immunoglobulin E (sIgE) testing. Since the last publication of this consensus document, a great deal of new information has become available regarding this topic, with over 100 publications in the last year alone. It thus seems quite reasonable to publish an update. It is imperative that clinicians and immunologists specifically trained in allergology keep abreast of the new and rapidly evolving evidence available for PAMD@. PAMD@ may initially appear complex to interpret; however, with increasing experience, the information gained provides relevant information for the allergist. This is especially true for food allergy, Hymenoptera allergy, and for the selection of allergen immunotherapy. Nevertheless, all sIgE tests, including PAMD@, should be evaluated within the framework of a patient's clinical history, because allergen sensitization does not necessarily imply clinical relevant allergies.
Collapse
|