• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5097414)   Today's Articles (1779)
For: Hu B, Xu Y, Hu J. Crank–Nicolson finite difference scheme for the Rosenau–Burgers equation. Applied Mathematics and Computation 2008;204:311-316. [DOI: 10.1016/j.amc.2008.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Number Cited by Other Article(s)
1
Luo S, He Y, Ling Y. Generalized high-order compact difference schemes for the generalized Rosenau–Burgers equation. COMPUTATIONAL AND APPLIED MATHEMATICS 2024;43:322. [DOI: 10.1007/s40314-024-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 01/04/2025]
2
Özer S, Yağmurlu NM. Numerical solutions of nonhomogeneous Rosenau type equations by quintic B‐spline collocation method. MATHEMATICAL METHODS IN THE APPLIED SCIENCES 2022;45:5545-5558. [DOI: 10.1002/mma.8125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/13/2022] [Indexed: 01/04/2025]
3
Kamran M, Abbas M, Majeed A, Emadifar H, Nazir T. Numerical Simulation of Time Fractional BBM-Burger Equation Using Cubic B-Spline Functions. JOURNAL OF FUNCTION SPACES 2022;2022:1-11. [DOI: 10.1155/2022/2119416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
4
Li F, Abo Keir MY. Mathematical model of back propagation for stock price forecasting. APPLIED MATHEMATICS AND NONLINEAR SCIENCES 2022;7:523-532. [DOI: 10.2478/amns.2021.1.00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
5
Moradi V, Sayevand K. On fractional Kakutani–Matsuuchi water wave model: Implementing a reliable implicit finite difference method. MATHEMATICAL METHODS IN THE APPLIED SCIENCES 2021;44:11944-11960. [DOI: 10.1002/mma.6788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/21/2020] [Indexed: 01/04/2025]
6
Wongsaijai B, Poochinapan K. Optimal decay rates of the dissipative shallow water waves modeled by coupling the Rosenau-RLW equation and the Rosenau-Burgers equation with power of nonlinearity. APPLIED MATHEMATICS AND COMPUTATION 2021;405:126202. [DOI: 10.1016/j.amc.2021.126202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
7
Cheng X. A three-level implicit difference scheme for solving the inviscid Burgers' equation with time delay. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 2021;27:1218-1231. [DOI: 10.1080/10236198.2021.1974851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/23/2021] [Indexed: 01/04/2025]
8
Majeed A, Kamran M, Abbas M, Bin Misro MY. An efficient numerical scheme for the simulation of time-fractional nonhomogeneous Benjamin-Bona-Mahony-Burger model. PHYSICA SCRIPTA 2021;96:084002. [DOI: 10.1088/1402-4896/abfde2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
9
Karaman B, Dereli Y. Numerical simulation for a time-fractional coupled nonlinear Schrödinger equations. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 2021;98:1233-1253. [DOI: 10.1080/00207160.2020.1814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2025]
10
Karaman B. ON THE NUMERICAL SIMULATION OF TIME-SPACE FRACTIONAL COUPLED NONLINEAR SCHRÖDINGER EQUATIONS UTILIZING WENDLAND’S COMPACTLY SUPPORTED FUNCTION COLLOCATION METHOD. MATHEMATICAL MODELLING AND ANALYSIS 2021;26:94-115. [DOI: 10.3846/mma.2021.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2025]
11
Hasan MT, Xu C. The stability and convergence of time-stepping/spectral methods with asymptotic behaviour for the Rosenau–Burgers equation. APPLICABLE ANALYSIS 2020;99:2013-2025. [DOI: 10.1080/00036811.2018.1553034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2025]
12
Guo C, Xue W, Wang Y, Zhang Z. A new implicit nonlinear discrete scheme for Rosenau–Burgers equation based on multiple integral finite volume method. AIP ADVANCES 2020;10. [DOI: 10.1063/1.5142004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
13
Otegbeye O, Goqo SP, Ansari MS. Comparative study of some spectral based methods for solving boundary layer flow problems. AIP CONFERENCE PROCEEDINGS 2020;2253:020013. [DOI: 10.1063/5.0019230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
14
Jun Z. Numerical Methods for a Shallow Water Rosenau-Burgers Equation. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2019;252:052123. [DOI: 10.1088/1755-1315/252/5/052123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
15
Zürnacı F, Seydaoğlu M. On the convergence of operator splitting for the Rosenau–Burgers equation. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 2019;35:1363-1382. [DOI: 10.1002/num.22354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2025]
16
Otegbeye O, Motsa SS. A paired spectral-finite difference approach for solving boundary layer flow problems. AFRIKA MATEMATIKA 2019;30:433-458. [DOI: 10.1007/s13370-019-00658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/24/2019] [Indexed: 01/04/2025]
17
Wang X, Dai W, Guo S. A conservative linear difference scheme for the 2D regularized long-wave equation. APPLIED MATHEMATICS AND COMPUTATION 2019;342:55-70. [DOI: 10.1016/j.amc.2018.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
18
Shen X, Zhu A. A Crank–Nicolson linear difference scheme for a BBM equation with a time fractional nonlocal viscous term. ADVANCES IN DIFFERENCE EQUATIONS 2018;2018:351. [DOI: 10.1186/s13662-018-1815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2025]
19
Wang X, Dai W. A new implicit energy conservative difference scheme with fourth-order accuracy for the generalized Rosenau–Kawahara-RLW equation. COMPUTATIONAL AND APPLIED MATHEMATICS 2018;37:6560-6581. [DOI: 10.1007/s40314-018-0685-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2025]
20
Zhou X, Zhang L. A conservative compact difference scheme for the Zakharov equations in one space dimension. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 2018;95:279-302. [DOI: 10.1080/00207160.2017.1284319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
21
Chen T, Xiang K, Chen P, Luo X. A New Linear Difference Scheme for Generalized Rosenau-Kawahara Equation. MATHEMATICAL PROBLEMS IN ENGINEERING 2018;2018:1-8. [DOI: 10.1155/2018/5946924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
22
Wang H, Li S, Wang J. A conservative weighted finite difference scheme for the generalized Rosenau-RLW equation. COMPUTATIONAL AND APPLIED MATHEMATICS 2017;36:63-78. [DOI: 10.1007/s40314-015-0214-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
23
Piao GR, Lee JY, Cai GX. Analysis and computational method based on quadratic B-spline FEM for the Rosenau-Burgers equation. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 2016;32:877-895. [DOI: 10.1002/num.22034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
24
Ramos JI, García-López CM. Solitary Wave Formation from a Generalized Rosenau Equation. MATHEMATICAL PROBLEMS IN ENGINEERING 2016;2016:1-17. [DOI: 10.1155/2016/4618364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
25
Pan X, Wang Y, Zhang L. Numerical analysis of a pseudo-compact C-N conservative scheme for the Rosenau-KdV equation coupling with the Rosenau-RLW equation. BOUNDARY VALUE PROBLEMS 2015;2015:65. [DOI: 10.1186/s13661-015-0328-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
26
Wang H, Wang J, Li S. A new conservative nonlinear high-order compact finite difference scheme for the general Rosenau-RLW equation. BOUNDARY VALUE PROBLEMS 2015;2015:77. [DOI: 10.1186/s13661-015-0336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
27
Janwised J, Wongsaijai B, Mouktonglang T, Poochinapan K. A Modified Three-Level Average Linear-Implicit Finite Difference Method for the Rosenau-Burgers Equation. ADVANCES IN MATHEMATICAL PHYSICS 2014;2014:1-11. [DOI: 10.1155/2014/734067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
28
Xue GY, Zhang L. A new finite difference scheme for generalized Rosenau–Burgers equation. APPLIED MATHEMATICS AND COMPUTATION 2013;222:490-496. [DOI: 10.1016/j.amc.2013.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
29
Shao X, Xue G, Li C. A conservative weighted finite difference scheme for regularized long wave equation. APPLIED MATHEMATICS AND COMPUTATION 2013;219:9202-9209. [DOI: 10.1016/j.amc.2013.03.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
30
Pan X, Zhang L. A new finite difference scheme for the Rosenau–Burgers equation. APPLIED MATHEMATICS AND COMPUTATION 2012;218:8917-8924. [DOI: 10.1016/j.amc.2012.02.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
31
Pan X, Zhang L. Numerical Simulation for General Rosenau‐RLW Equation: AnAverage Linearized Conservative Scheme. MATHEMATICAL PROBLEMS IN ENGINEERING 2012;2012. [DOI: 10.1155/2012/517818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/09/2012] [Indexed: 01/04/2025]
32
Xu Y, Hu B, Xie X, Hu J. Mixed finite element analysis for dissipative SRLW equations with damping term. APPLIED MATHEMATICS AND COMPUTATION 2012;218:4788-4797. [DOI: 10.1016/j.amc.2011.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
33
Hu J, Hu B, Xu Y. Average implicit linear difference scheme for generalized Rosenau–Burgers equation. APPLIED MATHEMATICS AND COMPUTATION 2011;217:7557-7563. [DOI: 10.1016/j.amc.2011.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
34
Hu J, Hu B, Xu Y. C‐N Difference Schemes for Dissipative Symmetric Regularized Long Wave Equations with Damping Term. MATHEMATICAL PROBLEMS IN ENGINEERING 2011;2011. [DOI: 10.1155/2011/651642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/25/2011] [Indexed: 02/07/2023]
35
Zuo JM, Zhang YM, Zhang TD, Chang F. A New Conservative Difference Scheme for the General Rosenau-RLW Equation. BOUNDARY VALUE PROBLEMS 2010;2010:516260. [DOI: 10.1155/2010/516260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
36
Hu J, Xu Y, Hu B. A Linear Difference Scheme for Dissipative Symmetric Regularized Long Wave Equations with Damping Term. BOUNDARY VALUE PROBLEMS 2010;2010:781750. [DOI: 10.1155/2010/781750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
37
Hu J, Zheng K. Two Conservative Difference Schemes for the Generalized Rosenau Equation. BOUNDARY VALUE PROBLEMS 2010;2010:543503. [DOI: 10.1155/2010/543503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
38
Li D, Wang Z, Wu Y, Lu Y. A Finite Difference Simulation for Rosenau-Burgers Equation. 2009 INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING AND COMPUTER SCIENCE 2009:1-4. [DOI: 10.1109/iciecs.2009.5367154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
Excel