• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5100867)   Today's Articles (0)
For: Hu J, Hu B, Xu Y. Average implicit linear difference scheme for generalized Rosenau–Burgers equation. Applied Mathematics and Computation 2011;217:7557-7563. [DOI: 10.1016/j.amc.2011.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Number Cited by Other Article(s)
1
Luo S, He Y, Ling Y. Generalized high-order compact difference schemes for the generalized Rosenau–Burgers equation. COMPUTATIONAL AND APPLIED MATHEMATICS 2024;43:322. [DOI: 10.1007/s40314-024-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 01/04/2025]
2
Zhao L, Zhao F, Li C. Linearized finite difference schemes for a tempered fractional Burgers equation in fluid-saturated porous rocks. WAVES IN RANDOM AND COMPLEX MEDIA 2024;34:2816-2840. [DOI: 10.1080/17455030.2021.1968539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2025]
3
Rouatbi A, Ghiloufi A, Omrani K. An efficient tool for solving the Rosenau–Burgers equation in two dimensions. COMPUTATIONAL AND APPLIED MATHEMATICS 2022;41:210. [DOI: 10.1007/s40314-022-01914-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 01/04/2025]
4
Wongsaijai B, Poochinapan K. Optimal decay rates of the dissipative shallow water waves modeled by coupling the Rosenau-RLW equation and the Rosenau-Burgers equation with power of nonlinearity. APPLIED MATHEMATICS AND COMPUTATION 2021;405:126202. [DOI: 10.1016/j.amc.2021.126202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
5
Majeed A, Kamran M, Abbas M, Bin Misro MY. An efficient numerical scheme for the simulation of time-fractional nonhomogeneous Benjamin-Bona-Mahony-Burger model. PHYSICA SCRIPTA 2021;96:084002. [DOI: 10.1088/1402-4896/abfde2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
6
Gu W, Qin H, Ran M. Numerical Investigations for a Class of Variable Coefficient Fractional Burgers Equations With Delay. IEEE ACCESS 2019;7:26892-26899. [DOI: 10.1109/access.2019.2900332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
7
Shen X, Zhu A. A Crank–Nicolson linear difference scheme for a BBM equation with a time fractional nonlocal viscous term. ADVANCES IN DIFFERENCE EQUATIONS 2018;2018:351. [DOI: 10.1186/s13662-018-1815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2025]
8
Chen T, Xiang K, Chen P, Luo X. A New Linear Difference Scheme for Generalized Rosenau-Kawahara Equation. MATHEMATICAL PROBLEMS IN ENGINEERING 2018;2018:1-8. [DOI: 10.1155/2018/5946924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
9
Rouatbi A, Rouis M, Omrani K. Numerical scheme for a model of shallow water waves in(2+1)-dimensions. COMPUTERS & MATHEMATICS WITH APPLICATIONS 2017;74:1871-1884. [DOI: 10.1016/j.camwa.2017.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
10
Mohebbi A, Faraz Z. Solitary wave solution of nonlinear Benjamin–Bona–Mahony–Burgers equation using a high-order difference scheme. COMPUTATIONAL AND APPLIED MATHEMATICS 2017;36:915-927. [DOI: 10.1007/s40314-015-0272-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
11
Li D, Zhang C, Ran M. A linear finite difference scheme for generalized time fractional Burgers equation. APPLIED MATHEMATICAL MODELLING 2016;40:6069-6081. [DOI: 10.1016/j.apm.2016.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
12
Piao GR, Lee JY, Cai GX. Analysis and computational method based on quadratic B-spline FEM for the Rosenau-Burgers equation. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 2016;32:877-895. [DOI: 10.1002/num.22034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
13
Ramos JI, García-López CM. Solitary Wave Formation from a Generalized Rosenau Equation. MATHEMATICAL PROBLEMS IN ENGINEERING 2016;2016:1-17. [DOI: 10.1155/2016/4618364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
14
Wang H, Wang J, Li S. A new conservative nonlinear high-order compact finite difference scheme for the general Rosenau-RLW equation. BOUNDARY VALUE PROBLEMS 2015;2015:77. [DOI: 10.1186/s13661-015-0336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
15
Sun H, Sun ZZ. On two linearized difference schemes for Burgers’ equation. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 2015;92:1160-1179. [DOI: 10.1080/00207160.2014.927059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
16
Janwised J, Wongsaijai B, Mouktonglang T, Poochinapan K. A Modified Three-Level Average Linear-Implicit Finite Difference Method for the Rosenau-Burgers Equation. ADVANCES IN MATHEMATICAL PHYSICS 2014;2014:1-11. [DOI: 10.1155/2014/734067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
17
Xue GY, Zhang L. A new finite difference scheme for generalized Rosenau–Burgers equation. APPLIED MATHEMATICS AND COMPUTATION 2013;222:490-496. [DOI: 10.1016/j.amc.2013.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA