• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5090382)   Today's Articles (8149)
For: Xu Y, Hu B, Xie X, Hu J. Mixed finite element analysis for dissipative SRLW equations with damping term. Applied Mathematics and Computation 2012;218:4788-4797. [DOI: 10.1016/j.amc.2011.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Number Cited by Other Article(s)
1
Wu J, Guo C, Fan B, Zheng X, Li X, Wang Y. Two high-precision compact schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying bounds integral method. AIP ADVANCES 2024;14. [DOI: 10.1063/5.0233771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
2
Li S, Fu H. A new high-order compact and conservative numerical scheme for the generalized symmetric regularized long wave equations. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 2023;100:968-990. [DOI: 10.1080/00207160.2023.2167516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/04/2025]
3
He Y, Wang X, Dai W. Coupled and decoupled high‐order accurate dissipative finite difference schemes for the dissipative generalized symmetric regularized long wave equations. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 2022;38:1112-1143. [DOI: 10.1002/num.22836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/20/2021] [Indexed: 01/04/2025]
4
Fu Z, Guo Z, Hu JS, Zhang ZY. A decoupled high accuracy linear difference scheme for symmetric regularized long wave equation with damping term. THERMAL SCIENCE 2022;26:1061-1068. [DOI: 10.2298/tsci2202061f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
5
Gao Y, Mei L. Galerkin finite element methods for two-dimensional RLW and SRLW equations. APPLICABLE ANALYSIS 2018;97:2288-2312. [DOI: 10.1080/00036811.2017.1359568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
6
Li S, Wu X. $$L^{\infty }$$ L ∞ error bound of conservative compact difference scheme for the generalized symmetric regularized long-wave (GSRLW) equations. COMPUTATIONAL AND APPLIED MATHEMATICS 2018;37:2816-2836. [DOI: 10.1007/s40314-017-0481-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
7
Atouani N, Ouali Y, Omrani K. Mixed finite element methods for the Rosenau equation. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING 2018;57:393-420. [DOI: 10.1007/s12190-017-1112-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
8
Mittal RC, Tripathi A. Numerical Solutions of Symmetric Regularized Long Wave Equations Using Collocation of CubicB-splines Finite Element. INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE AND MECHANICS 2015;16:142-150. [DOI: 10.1080/15502287.2015.1011812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA