1
|
Goldmuntz E, Bassett AS, Boot E, Marino B, Moldenhauer JS, Óskarsdóttir S, Putotto C, Rychik J, Schindewolf E, McDonald-McGinn DM, Blagowidow N. Prenatal cardiac findings and 22q11.2 deletion syndrome: Fetal detection and evaluation. Prenat Diagn 2024; 44:804-814. [PMID: 38593251 DOI: 10.1002/pd.6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Clinical features of 22q11.2 microdeletion syndrome (22q11.2DS) are highly variable between affected individuals and frequently include a subset of conotruncal and aortic arch anomalies. Many are diagnosed with 22q11.2DS when they present as a fetus, newborn or infant with characteristic cardiac findings and subsequently undergo genetic testing. The presence of an aortic arch anomaly with characteristic intracardiac anomalies increases the likelihood that the patient has 22q11.2 DS, but those with an aortic arch anomaly and normal intracardiac anatomy are also at risk. It is particularly important to identify the fetus at risk for 22q11.2DS in order to prepare the expectant parents and plan postnatal care for optimal outcomes. Fetal anatomy scans now readily identify aortic arch anomalies (aberrant right subclavian artery, right sided aortic arch or double aortic arch) in the three-vessel tracheal view. Given the association of 22q11.2DS with aortic arch anomalies with and without intracardiac defects, this review highlights the importance of recognizing the fetus at risk for 22q11.2 deletion syndrome with an aortic arch anomaly and details current methods for genetic testing. To assist in the prenatal diagnosis of 22q11.2DS, this review summarizes the seminal features of 22q11.2DS, its prenatal presentation and current methods for genetic testing.
Collapse
Affiliation(s)
- Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anne S Bassett
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Erik Boot
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Bruno Marino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome (Italy), Roma, Italy
| | - Julie S Moldenhauer
- Division of Human Genetics, 22q and You Center, Clinical Genetics Center, Section of Genetic Counseling, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Departments of Obstetrics and Gynecology and Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sólveig Óskarsdóttir
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Immunology, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Carolina Putotto
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome (Italy), Roma, Italy
| | - Jack Rychik
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica Schindewolf
- Division of Human Genetics, 22q and You Center, Clinical Genetics Center, Section of Genetic Counseling, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, 22q and You Center, Clinical Genetics Center, Section of Genetic Counseling, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Human Biology and Medical Genetics, Sapienza University, Rome, Italy
| | - Natalie Blagowidow
- The Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the use of cardiovascular magnetic resonance in pediatric congenital and acquired heart disease : Endorsed by The American Heart Association. J Cardiovasc Magn Reson 2022; 24:37. [PMID: 35725473 PMCID: PMC9210755 DOI: 10.1186/s12968-022-00843-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of CMR in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of CMR in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA
| |
Collapse
|
3
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the Use of Cardiac Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. Circ Cardiovasc Imaging 2022; 15:e014415. [PMID: 35727874 PMCID: PMC9213089 DOI: 10.1161/circimaging.122.014415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2022] [Indexed: 01/15/2023]
Abstract
Cardiovascular magnetic resonance has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of cardiovascular magnetic resonance in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of cardiovascular magnetic resonance in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A. Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, (M.A.F.)
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA, (M.A.F.)
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA, (S.A.)
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA, (C.B.)
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA, (L.B.)
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA, (T.C.)
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA, (T.J.)
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK, (V.M.)
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA, (M.T.)
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA (C.W.)
| |
Collapse
|
4
|
Balaban İ, Bilgici MC, Baysal K. A new association of Oculoauriculovertebral spectrum and persistent fifth aortic arch -double lumen aorta: a case report. BMC Pediatr 2022; 22:102. [PMID: 35189859 PMCID: PMC8862463 DOI: 10.1186/s12887-022-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Oculo-auriculo-vertebral spectrum is a heterogeneous group of genetic disorder, also known as Goldenhar Syndrome, which has several phenotypic features including craniofacial anomalies, cardiac, vertebral and central nervous system defects. Cardiovascular anomalies include ventricular septal defects, atrial septal defects, patent ductus arteriosus, Tetralogy of Fallot, double outlet right ventricle, aberrant right subclavian artery, coarctation of aorta, transposition of the great arteries, double inlet left ventricle, cor triatriatum, pulmonary artery stenosis, aortic stenosis, persistent left superior vena cava, partially or totally abnormal pulmonary venous return and bicuspid aortic valve. Persistent fifth aortic arch, also named as double lumen aortic arch, is a very rare cardivascular anomaly and usually associate other cardiac defects. Case presentation We present a 7 month old patient with oculo-auriculo-vertebral spectrum signs as facial asymmetry, short neck, choanal atresia, cleft palate, bilateral preauricular skin tags, bilateral hypoplastic ear lobes, epibulbar dermoid cyst, rib, vertebrae and cardiovascular anomalies. Cardiovascular anomalies detected with echocardiography and computed tomography were malalignment ventricular septal defect and double lumen aorta, known as persistent fifth aortic arch. Conclusion Various cardiovascular anomalies may accompany Goldenhar Syndrome. We present a case with persistent fifth aortic arch and Oculo-auriculo-vertebral spectrum and this is a new association that was not reported before in the literature.
Collapse
Affiliation(s)
- İsmail Balaban
- Department of Pediatric Cardiology, Yeni Yüzyıl University Faculty of Medicine, Merkez Mahallesi Çukurçeşme Caddesi No:51 Gaziosmanpaşa, İstanbul, Turkey.
| | - Meltem Ceyhan Bilgici
- Department of Pediatric Radiology, Ondokuz Mayıs University Faculty of Medicine, Samsun, Turkey
| | - Kemal Baysal
- Department of Pediatric Cardiology, Ondokuz Mayıs University Faculty of Medicine, Samsun, Turkey
| |
Collapse
|
5
|
Unolt M, Versacci P, Anaclerio S, Lambiase C, Calcagni G, Trezzi M, Carotti A, Crowley TB, Zackai EH, Goldmuntz E, Gaynor JW, Digilio MC, McDonald-McGinn DM, Marino B. Congenital heart diseases and cardiovascular abnormalities in 22q11.2 deletion syndrome: From well-established knowledge to new frontiers. Am J Med Genet A 2018; 176:2087-2098. [PMID: 29663641 PMCID: PMC6497171 DOI: 10.1002/ajmg.a.38662] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Congenital heart diseases (CHDs) and cardiovascular abnormalities are one of the pillars of clinical diagnosis of 22q11.2 deletion syndrome (22q11.2DS) and still represent the main cause of mortality in the affected children. In the past 30 years, much progress has been made in describing the anatomical patterns of CHD, in improving their diagnosis, medical treatment, and surgical procedures for these conditions, as well as in understanding the underlying genetic and developmental mechanisms. However, further studies are still needed to better determine the true prevalence of CHDs in 22q11.2DS, including data from prenatal studies and on the adult population, to further clarify the genetic mechanisms behind the high variability of phenotypic expression of 22q11.2DS, and to fully understand the mechanism responsible for the increased postoperative morbidity and for the premature death of these patients. Moreover, the increased life expectancy of persons with 22q11.2DS allowed the expansion of the adult population that poses new challenges for clinicians such as acquired cardiovascular problems and complexity related to multisystemic comorbidity. In this review, we provide a comprehensive review of the existing literature about 22q11.2DS in order to summarize the knowledge gained in the past years of clinical experience and research, as well as to identify the remaining gaps in comprehension of this syndrome and the possible future research directions.
Collapse
Affiliation(s)
- Marta Unolt
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Silvia Anaclerio
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Caterina Lambiase
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Matteo Trezzi
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Terrence Blaine Crowley
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Goldmuntz
- The Cardiac Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James William Gaynor
- The Cardiac Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Bruno Marino
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
6
|
Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Rev Rep 2016; 11:710-27. [PMID: 26085192 DOI: 10.1007/s12015-015-9596-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Congenital heart disease (CHD) remains a significant health problem, with a growing population of survivors with chronic disease. Despite intense efforts to understand the genetic basis of CHD in humans, the etiology of most CHD is unknown. Furthermore, new models of CHD are required to better understand the development of CHD and to explore novel therapies for this patient population. In this review, we highlight the role that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes can serve to enhance our understanding of the development, pathophysiology and potential therapeutic targets for CHD. We highlight the use of hiPSC-derived cardiomyocytes to model gene regulatory interactions, cell-cell interactions and tissue interactions contributing to CHD. We further emphasize the importance of using hiPSC-derived cardiomyocytes as personalized research models. The use of hiPSCs presents an unprecedented opportunity to generate disease-specific cellular models, investigate the underlying molecular mechanisms of disease and uncover new therapeutic targets for CHD.
Collapse
|
7
|
Kumar A, Patton DJ, Friedrich MG. The emerging clinical role of cardiovascular magnetic resonance imaging. Can J Cardiol 2010; 26:313-22. [PMID: 20548977 DOI: 10.1016/s0828-282x(10)70396-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Starting as a research method little more than a decade ago, cardiovascular magnetic resonance (CMR) imaging has rapidly evolved to become a powerful diagnostic tool used in routine clinical cardiology. The contrast in CMR images is generated from protons in different chemical environments and, therefore, enables high-resolution imaging and specific tissue characterization in vivo, without the use of potentially harmful ionizing radiation.CMR imaging is used for the assessment of regional and global ventricular function, and to answer questions regarding anatomy. State-of-the-art CMR sequences allow for a wide range of tissue characterization approaches, including the identification and quantification of nonviable, edematous, inflamed, infiltrated or hypoperfused myocardium. These tissue changes are not only used to help identify the etiology of cardiomyopathies, but also allow for a better understanding of tissue pathology in vivo. CMR tissue characterization may also be used to stage a disease process; for example, elevated T2 signal is consistent with edema and helps differentiate acute from chronic myocardial injury, and the extent of myocardial fibrosis as imaged by contrast-enhanced CMR correlates with adverse patient outcome in ischemic and nonischemic cardiomyopathies.The current role of CMR imaging in clinical cardiology is reviewed, including coronary artery disease, congenital heart disease, nonischemic cardiomyopathies and valvular disease.
Collapse
Affiliation(s)
- Andreas Kumar
- Stephenson CMR Centre at the Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
8
|
Momma K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am J Cardiol 2010; 105:1617-24. [PMID: 20494672 DOI: 10.1016/j.amjcard.2010.01.333] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
Cardiovascular anomalies are present in 80% of neonates with 22q11.2 deletion syndrome. Three genes in chromosome 22q11.2 (TBX1, CRKL, and ERK2) have been identified whose haploinsufficiency causes dysfunction of the neural crest cell and anterior heart field and anomalies of 22q11.2 deletion syndrome. The most common diseases are conotruncal anomalies, which include tetralogy of Fallot (TF), TF with pulmonary atresia, truncus arteriosus, and interrupted aortic arch. A high prevalence of the deletion is noted in patients with TF with absent pulmonary valve, TF associated with pulmonary atresia and major aortopulmonary collateral arteries, truncus arteriosus, and type B interruption of aortic arch. Right aortic arch, aberrant subclavian artery, cervical origin of the subclavian artery, crossing pulmonary arteries, and major aortopulmonary collateral arteries are frequently associated with cardiovascular anomalies associated with 22q11.2 deletion syndrome. Virtually every type of congenital heart defect has been described early in the context of a 22q11.2 deletion. In conclusion, conotruncal anomaly associated with aortic arch and ductus arteriosus anomalies should increase the suspicion of 22q11.2 deletion.
Collapse
Affiliation(s)
- Kazuo Momma
- Section of Pediatric Cardiology, Heart Center, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
9
|
Abstract
Cardiac imaging has had significant influence on the science and practice of pediatric cardiology. Especially the development and improvements made in non-invasive imaging techniques, like echocardiography and cardiac magnetic resonance imaging (MRI), have been extremely important. Technical advancements in the field of medical imaging are quickly being made. This review will focus on some of the important evolutions in pediatric cardiac imaging. Techniques such as intracardiac echocardiography, 3D echocardiography, and tissue Doppler imaging are relatively new echocardiographic techniques, which further optimize the anatomical and functional aspects of congenital heart disease. Also, the current standing of cardiac MRI and cardiac computerized tomography will be discussed. Finally, the recent European efforts to organize training and accreditation in pediatric echocardiography are highlighted.
Collapse
Affiliation(s)
- Luc Mertens
- Pediatric Cardiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | |
Collapse
|