1
|
Okubo M, Kawasaki M, Yagami H, Tanigaki T, Kawase Y, Matsuo H, Suzuki T. Prediction of fractional flow reserve using intravascular ultrasound. EUROINTERVENTION 2024; 20:e1237-e1247. [PMID: 39374092 PMCID: PMC11443256 DOI: 10.4244/eij-d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/28/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND In order to identify coronary lesions that cause myocardial ischaemia and require revascularisation, fractional flow reserve (FFR) is widely recommended. Recently, a method of estimating the FFR using morphological features measured by an imaging device was developed. However, all the previously developed methods are conducted offline, and such analysis takes approximately 10 minutes. AIMS The aim of this present study was to develop an online measurement of the FFR using an intravascular ultrasound (IVUS) quantitative method (IQ-FFR). METHODS This prospective, single-centre study included coronary lesions that met the following criteria: (1) presence of at least one stenosis (25-99%); (2) both IVUS and FFR measurement performed just before and after stent implantation, with the wire-derived FFR measured with a standard method; and (3) acquisition of clear images throughout the entire coronary branch. RESULTS We developed an IVUS analysis system that automatically measures the cross-sectional area every 0.5 mm, and we calculated the IQ-FFR. In the prediction study, we calculated the IQ-FFR on the assumption that one stent of arbitrary length and diameter was implanted. After stent implantation, the wire-derived FFR was measured and compared with the calculated IQ-FFR. We compared 270 coronary lesions with stenosis rates of 32-99%. IQ-FFR measurements were strongly correlated with the wire-derived FFR (r=0.896). In the prediction study, the clinical accuracy of predicting whether the FFR would be greater or less than 0.80 after stent implantation was 87.5%. CONCLUSIONS The IQ-FFR is a promising method to identify coronary lesions requiring revascularisation and to predict the FFR after stent implantation.
Collapse
Affiliation(s)
- Munenori Okubo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Hiroyuki Yagami
- Department of Cardiology, Deep Sound Laboratory, Shizuoka, Japan
| | - Toru Tanigaki
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Yoshiaki Kawase
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Takahiko Suzuki
- Department of Cardiovascular Medicine, Toyohashi Heart Center, Aichi, Japan
| |
Collapse
|
2
|
Olsen NT, Sheng K. Simulation of coronary fractional flow reserve and whole-cycle flow based on optical coherence tomography in individual patients with coronary artery disease. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1661-1670. [PMID: 38880840 PMCID: PMC11401778 DOI: 10.1007/s10554-024-03151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Computer simulations of coronary fractional flow reserve (FFR) based on coronary imaging have emerged as an attractive alternative to invasive measurements. However, most methods are proprietary and employ non-physiological assumptions. Our aims were to develop and validate a physiologically realistic open-source simulation model for coronary flow, and to use this model to predict FFR based on intracoronary optical coherence tomography (OCT) data in individual patients. We included patients undergoing elective coronary angiography with angiographic borderline coronary stenosis. Invasive measurements of coronary hyperemic pressure and absolute flow and OCT imaging were performed. A computer model of coronary flow incorporating pulsatile flow and the effect of left ventricular contraction was developed and calibrated, and patient-specific flow simulation was performed. Forty-eight coronary arteries from 41 patients were included in the analysis. Average FFR was 0.79 ± 0.14, and 50% had FFR ≤ 0.80. Correlation between simulated and measured FFR was high (r = 0.83, p < 0.001). Average difference between simulated FFR and observed FFR in individual patients was - 0.009 ± 0.076. Overall diagnostic accuracy for simulated FFR ≤ 0.80 in predicting observed FFR ≤ 0.80 was 0.88 (0.75-0.95) with sensitivity 0.79 (0.58-0.93) and specificity 0.96 (0.79-1.00). The positive predictive value was 0.95 (0.75-1.00) and the negative predictive value was 0.82 (0.63-0.94). In conclusion, realistic simulations of whole-cycle coronary flow can be produced based on intracoronary OCT data with a new, computationally simple simulation model. Simulated FFR had moderate numerical agreement with observed FFR and a good diagnostic accuracy for predicting hemodynamic significance of coronary stenoses.
Collapse
Affiliation(s)
- Niels Thue Olsen
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kaining Sheng
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Hatfaludi CA, Tache IA, Ciusdel CF, Puiu A, Stoian D, Calmac L, Popa-Fotea NM, Bataila V, Scafa-Udriste A, Itu LM. Co-registered optical coherence tomography and X-ray angiography for the prediction of fractional flow reserve. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1029-1039. [PMID: 38376719 DOI: 10.1007/s10554-024-03069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular disease (CVD) stands as the leading global cause of mortality, and coronary artery disease (CAD) has the highest prevalence, contributing to 42% of these fatalities. Recognizing the constraints inherent in the anatomical assessment of CAD, Fractional Flow Reserve (FFR) has emerged as a pivotal functional diagnostic metric. Herein, we assess the potential of employing an ensemble approach with deep neural networks (DNN) to predict invasively measured Fractional Flow Reserve (FFR) using raw anatomical data extracted from both optical coherence tomography (OCT) and X-ray coronary angiography (XA). In this study, we used a challenging dataset, with 46% of the lesions falling within the FFR range of 0.75 to 0.85. Despite this complexity, our model achieved an accuracy of 84.3%, demonstrating a sensitivity of 87.5% and a specificity of 81.4%. Our results demonstrate that incorporating both OCT and XA signals, co-registered, as inputs for the DNN model leads to an important increase in overall accuracy.
Collapse
Affiliation(s)
- Cosmin-Andrei Hatfaludi
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania.
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania.
| | - Irina-Andra Tache
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Department of Automatic Control and Systems Engineering, University Politehnica of Bucharest, Bucharest, 014461, Romania
| | - Costin-Florian Ciusdel
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| | - Andrei Puiu
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| | - Diana Stoian
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| | - Lucian Calmac
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
- Department Cardio-Thoracic, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari, Bucharest, 050474, Romania
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
- Department Cardio-Thoracic, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari, Bucharest, 050474, Romania
| | - Vlad Bataila
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
- Department Cardio-Thoracic, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari, Bucharest, 050474, Romania
| | - Lucian Mihai Itu
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| |
Collapse
|
4
|
Ziedses des Plantes AC, Scoccia A, Gijsen F, van Soest G, Daemen J. Intravascular Imaging-Derived Physiology-Basic Principles and Clinical Application. Cardiol Clin 2024; 42:89-100. [PMID: 37949542 DOI: 10.1016/j.ccl.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Intravascular imaging-derived physiology is emerging as a promising tool allowing simultaneous anatomic and functional lesion assessment. Recently, several optical coherence tomography-based and intravascular ultrasound-based fractional flow reserve (FFR) indices have been developed that compute FFR through computational fluid dynamics, fluid dynamics equations, or machine-learning methods. This review aims to provide an overview of the currently available intravascular imaging-based physiologic indices, their diagnostic performance, and clinical application.
Collapse
Affiliation(s)
- Annemieke C Ziedses des Plantes
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Alessandra Scoccia
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Frank Gijsen
- Department of Biomedical Engineering, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Gijs van Soest
- Department of Biomedical Engineering, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Joost Daemen
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Koo BK, Lee JM, Hwang D, Park S, Shiono Y, Yonetsu T, Lee SH, Kawase Y, Ahn JM, Matsuo H, Shin ES, Hu X, Ding D, Fezzi S, Tu S, Low AF, Kubo T, Nam CW, Yong AS, Harding SA, Xu B, Hur SH, Choo GH, Tan HC, Mullasari A, Hsieh IC, Kakuta T, Akasaka T, Wang J, Tahk SJ, Fearon WF, Escaned J, Park SJ. Practical Application of Coronary Physiologic Assessment: Asia-Pacific Expert Consensus Document: Part 1. JACC. ASIA 2023; 3:689-706. [PMID: 38095005 PMCID: PMC10715899 DOI: 10.1016/j.jacasi.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 12/30/2023]
Abstract
Coronary physiologic assessment is performed to measure coronary pressure, flow, and resistance or their surrogates to enable the selection of appropriate management strategy and its optimization for patients with coronary artery disease. The value of physiologic assessment is supported by a large body of evidence that has led to major recommendations in clinical practice guidelines. This expert consensus document aims to convey practical and balanced recommendations and future perspectives for coronary physiologic assessment for physicians and patients in the Asia-Pacific region based on updated information in the field that including both wire- and image-based physiologic assessment. This is Part 1 of the whole consensus document, which describes the general concept of coronary physiology, as well as practical information on the clinical application of physiologic indices and novel image-based physiologic assessment.
Collapse
Affiliation(s)
- Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Sungjoon Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Taishi Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seung Hun Lee
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Yoshiaki Kawase
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Jung-Min Ahn
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Daixin Ding
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, National University of Ireland, University Road, Galway, Ireland
| | - Simone Fezzi
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, National University of Ireland, University Road, Galway, Ireland
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Adrian F. Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Takashi Kubo
- Department of Cardiology, Tokyo Medical University, Hachioji Medical Center, Tokyo, Japan
| | - Chang-Wook Nam
- Department of Internal Medicine and Cardiovascular Research Institute, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Andy S.C. Yong
- Department of Cardiology, Concord Hospital, University of Sydney, Sydney, Australia
| | - Scott A. Harding
- Department of Cardiology, Wellington Hospital, Wellington, New Zealand
| | - Bo Xu
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Seung-Ho Hur
- Department of Internal Medicine and Cardiovascular Research Institute, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Gim Hooi Choo
- Department of Cardiology, Cardiac Vascular Sentral KL (CVSKL), Kuala Lumpur, Malaysia
| | - Huay Cheem Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Ajit Mullasari
- Department of Cardiology, Madras Medical Mission, Chennai, India
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Seung-Jea Tahk
- Department of Cardiology, Ajou University Medical Center, Suwon, Korea
| | - William F. Fearon
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, Madrid, Spain
| | - Seung-Jung Park
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Xu T, Yu W, Ding D, Li C, Huang J, Kubo T, Wijns W, Tu S. Diagnostic Performance of Intracoronary Optical Coherence Tomography-Modulated Quantitative Flow Ratio for Assessing Coronary Stenosis. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:101043. [PMID: 39132390 PMCID: PMC11308763 DOI: 10.1016/j.jscai.2023.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 08/13/2024]
Abstract
Background A novel method for fast computation of Murray law-based quantitative flow ratio (μQFR) from coregistered angiography and optical coherence tomography (OCT) was recently developed. This study aimed to evaluate the diagnostic performance of this OCT-modulated μQFR (OCT-μFR). Methods Patients who underwent coronary angiography, OCT, and fractional flow reserve (FFR) were retrospectively enrolled. μQFR was computed from a single angiographic projection. Subsequently, OCT image pullback was coregistered with the angiogram, and OCT-μFR was calculated based on the coregistered data. The same cut-off value of 0.80 was used for OCT-μFR, μQFR, and FFR to define ischemia. Results A paired comparison of OCT-μFR and μQFR was performed in 269 vessels from 218 patients. The mean FFR was 0.81 ± 0.11, and 45.0% of vessels had an FFR ≤0.80. OCT-μFR showed a better correlation with FFR than μQFR (r = 0.83 vs 0.76, P = .018) and numerically higher diagnostic performance (area under the curve [AUC] = 0.95 vs 0.92, P = .057). Sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio for OCT-μFR to identify ischemia-causing stenosis were 89.3%, 93.2%, 91.5%, 91.4%, 13.2, and 0.1, respectively. In addition, OCT-μFR showed significantly higher diagnostic performance compared with μQFR in vessels with suboptimal angiographic image quality (AUC = 0.93 vs 0.87, P = .028) and tandem lesions (AUC = 0.94 vs 0.87, P = .017). Conclusions Computation of OCT-μFR was feasible and accurately identified physiologically significant coronary stenosis with simultaneous morphological assessment. In vessels with suboptimal angiographic image quality or tandem lesions, OCT-μFR had a higher diagnostic performance than angiography-based μQFR.
Collapse
Affiliation(s)
- Tianxiao Xu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Yu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Daixin Ding
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- The Lambe Institute for Translational Medicine, The Smart Sensors Laboratory and Curam, National University of Ireland, Galway, Ireland
| | - Chunming Li
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayue Huang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- The Lambe Institute for Translational Medicine, The Smart Sensors Laboratory and Curam, National University of Ireland, Galway, Ireland
| | - Takashi Kubo
- Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - William Wijns
- The Lambe Institute for Translational Medicine, The Smart Sensors Laboratory and Curam, National University of Ireland, Galway, Ireland
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Starczyński M, Dudek S, Baruś P, Niedzieska E, Wawrzeńczyk M, Ochijewicz D, Piasecki A, Gumiężna K, Milewski K, Grabowski M, Kochman J, Tomaniak M. Intravascular Imaging versus Physiological Assessment versus Biomechanics-Which Is a Better Guide for Coronary Revascularization. Diagnostics (Basel) 2023; 13:2117. [PMID: 37371012 DOI: 10.3390/diagnostics13122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/29/2023] Open
Abstract
Today, coronary artery disease (CAD) continues to be a prominent cause of death worldwide. A reliable assessment of coronary stenosis represents a prerequisite for the appropriate management of CAD. Nevertheless, there are still major challenges pertaining to some limitations of current imaging and functional diagnostic modalities. The present review summarizes the current data on invasive functional and intracoronary imaging assessment using optical coherence tomography (OCT), and intravascular ultrasound (IVUS). Amongst the functional parameters-on top of fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR)-we point to novel angiography-based measures such as quantitative flow ratio (QFR), vessel fractional flow reserve (vFFR), angiography-derived fractional flow reserve (FFRangio), and computed tomography-derived flow fractional reserve (FFR-CT), as well as hybrid approaches focusing on optical flow ratio (OFR), computational fluid dynamics and attempts to quantify the forces exaggerated by blood on the coronary plaque and vessel wall.
Collapse
Affiliation(s)
- Miłosz Starczyński
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Stanisław Dudek
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Piotr Baruś
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Emilia Niedzieska
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Mateusz Wawrzeńczyk
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Dorota Ochijewicz
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Adam Piasecki
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Karolina Gumiężna
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Krzysztof Milewski
- Center for Cardiovascular Research and Development, American Heart of Poland, 43-316 Bielsko-Biała, Poland
| | - Marcin Grabowski
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Janusz Kochman
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| | - Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a Str., 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Abdelmonaem M, Abushouk A, Reda A, Arafa S, Aboul-Enein H, Bendary A. IVUS-guided versus OCT-guided PCI among patients presenting with acute coronary syndrome. Egypt Heart J 2023; 75:49. [PMID: 37314624 DOI: 10.1186/s43044-023-00377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Intravascular imaging modalities such as intravascular ultrasound (IVUS) and, more recently, optical coherence tomography (OCT) improved the visualization of coronary anatomy and plaque pathology. We aimed to compare the procedural and short-term outcomes between IVUS-guided and OCT-guided percutaneous coronary interventions (PCIs) in patients with acute coronary syndrome (ACS). METHODS In the present retrospective study, we reviewed the data of 50 patients who had IVUS-guided PCI and 50 patients who had OCT-guided PCI for ACS between January 2020 and June 2021. Intravascular imaging was done before and after stenting. Both groups were compared in terms of minimal luminal area (MLA), stent dimensions, final minimal stent area (MSA) and stent expansion as well as negative angiographic outcomes. Patients were followed for six months to record major adverse cardiac events (MACE). RESULTS The patients' mean age was 57 ± 13 years with male predominance (78%). The radiation time and dose were significantly higher among IVUS group. Pre-stenting MLA was significantly higher in IVUS group (2.63 mm vs. 2.22 mm in OCT, P = 0.013). Stent expansion was significantly higher among OCT group (97% vs. 93% in IVUS group, P = 0.001) with no significant difference between both groups regarding MSA [mm2] (8.88 ± 2.87 in IVUS vs. 8.1 ± 2.76 in OCT, P = 0.169). No significant difference between both groups was noted regarding contrast volume, edge dissection, tissue prolapse, and no reflow. The rates of six-month MACE were significantly higher in the IVUS group. CONCLUSIONS OCT-guided PCI in ACS is safe and is associated with similar MSA to that of IVUS-guided PCI. Future randomized trials are needed to confirm these findings.
Collapse
Affiliation(s)
| | - Abdelrahman Abushouk
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ahmed Reda
- Cardiology Department, Ain Shams University, Cairo, Egypt
| | - Sherif Arafa
- Cardiology Department, Mansoura University, Mansoura, Egypt
| | | | - Ahmed Bendary
- Cardiology Department, Benha University, Benha, Egypt.
| |
Collapse
|
9
|
Hu F, Ding D, Westra J, Li Y, Yu W, Wang Z, Kubo T, Chico JLG, Chen Y, Wijns W, Tu S. Diagnostic accuracy of optical flow ratio: an individual patient-data meta-analysis. EUROINTERVENTION 2023; 19:e145-e154. [PMID: 36950895 PMCID: PMC10242661 DOI: 10.4244/eij-d-22-01098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/18/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Optical flow ratio (OFR) is a novel method for the fast computation of fractional flow reserve (FFR) from optical coherence tomography. AIMS We aimed to evaluate the diagnostic accuracy of OFR in assessing intermediate coronary stenosis using wire-based FFR as the reference. METHODS We performed an individual patient-level meta-analysis of all available studies with paired OFR and FFR assessments. The primary outcome was vessel-level diagnostic concordance of the OFR and FFR, using a cut-off of ≤0.80 to define ischaemia and ≤0.90 to define suboptimal post-percutaneous coronary intervention (PCI) physiology. This meta-analysis was registered in PROSPERO (CRD42021287726). RESULTS Five studies were finally included, providing 574 patients and 626 vessels (404 pre-PCI and 222 post-PCI) with paired OFR and FFR from 9 international centres. Vessel-level diagnostic concordance of the OFR and FFR was 91% (95% confidence interval [CI]: 88%-94%), 87% (95% CI: 82%-91%), and 90% (95% CI: 87%-92%) in pre-PCI, post-PCI, and overall, respectively. The overall sensitivity, specificity, and positive and negative predictive values were 84% (95% CI: 79%-88%), 94% (95% CI: 92%-96%), 90% (95% CI: 86%-93%), and 89% (95% CI: 86%-92%), respectively. Multivariate logistic regression indicated that a low pullback speed (odds ratio [OR] 7.02, 95% CI: 1.68-29.43; p=0.008) was associated with a higher risk of obtaining OFR values at least 0.10 higher than FFR. Increasing the minimal lumen area was associated with a lower risk of obtaining an OFR at least 0.10 lower than FFR (OR 0.39, 95% CI: 0.18-0.82; p=0.013). CONCLUSIONS This individual patient data meta-analysis demonstrated a high diagnostic accuracy of OFR. OFR has the potential to provide an improved integration of intracoronary imaging and physiological assessment for the accurate evaluation of coronary artery disease.
Collapse
Affiliation(s)
- Fukang Hu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Daixin Ding
- The Lambe Institute for Translational Research, Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Jelmer Westra
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yingguang Li
- Kunshan Industrial Technology Research Institute, Suzhou, People's Republic of China
| | - Wei Yu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhiqing Wang
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian, China
| | - Takashi Kubo
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - William Wijns
- The Lambe Institute for Translational Research, Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Intravascular Imaging-Based Physiologic Assessment. Interv Cardiol Clin 2023; 12:289-298. [PMID: 36922069 DOI: 10.1016/j.iccl.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Intravascular imaging (IVI), including intravascular ultrasound (IVUS) and optical coherence tomography (OCT), is clinically useful for assessing the luminal size, lesion length, and plaque characteristics, as well as for evaluating stent deployment; however, it is not designed to estimate myocardial ischemia accurately. Thus, several types of IVI-derived fractional flow reserve (FFR) (IVI-derived FFR) have been developed and reported. In general, the algorithms of virtual FFR are based on basic fluid dynamics equations (mainly Poiseuille and Borda-Carnot equations) and original microvascular models (fixed velocity or calculating coronary flow reserve). Although the models and assumptions used in the past reports were mostly based on the standard population (not independent patient data), the developed software calculated FFR with high accuracy (88% to 94%) with strong correlations between IVI-derived FFR and wire-based FFR (0.69 to 0.89). Given several other less invasive virtual FFR methods currently available for clinical use, IVI-derived FFR would be limited for the sole use of pre-percutaneous coronary intervention (PCI) physiological evaluation; however, it may play a unique role at PCI guidance and optimization, potentially allowing comprehensive and time/cost-saving assessment of both anatomical and physiological lesion properties using a single diagnostic device.
Collapse
|
11
|
Reddy MSH, Maddury J, Mamas MA, Assa HV, Kornowski R. Coronary Physiologic Assessment Based on Angiography and Intracoronary Imaging. INDIAN JOURNAL OF CARDIOVASCULAR DISEASE IN WOMEN 2023. [DOI: 10.25259/ijcdw_15_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Intracoronary physiology testing has evolved as a promising diagnostic approach in the management of patients with coronary artery disease. The value of hyperemic translesional pressure ratios to estimate the functional relevance of coronary stenoses is supported by a wealth of outcomes data. The continuing drive to further simplify this approach led to the development of non-hyperemic pressure-based indices. Recent attention has focused on estimating functional significance without invasively measuring coronary pressure through the measurement of virtual indices derived from the coronary angiogram. By offering a routine assessment of the physiology of all the major epicardial coronary vessels, angiogram-derived physiology has the potential to modify current practice by facilitating more accurate patient-level, vessel-level, and even lesion-level decision making. This article reviews the current state of angiogram-derived physiology and speculates on its potential impact on clinical practice, in continuation to the previously published article on coronary physiology in this journal.
Collapse
Affiliation(s)
- M. S. Harish Reddy
- Department of Cardiology, Nizams Institute of Medical Sciences, Hyderabad, Telangana, India,
| | - Jyotsna Maddury
- Department of Cardiology, Nizams Institute of Medical Sciences, Hyderabad, Telangana, India,
| | - Mamas A. Mamas
- Keele Cardiovascular Research Group, Keele University, Stoke on Trent, United Kingdom,
| | - Hana Vaknin Assa
- Department of Interventional Cardiology, Rabin Medical Center (RMC), Petach Tikva, Israel,
| | - Ran Kornowski
- Department of Director of Cardiology Division, Rabin Medical Center (RMC), Petach Tikva, Israel,
| |
Collapse
|
12
|
Volleberg R, Mol JQ, van der Heijden D, Meuwissen M, van Leeuwen M, Escaned J, Holm N, Adriaenssens T, van Geuns RJ, Tu S, Crea F, Stone G, van Royen N. Optical coherence tomography and coronary revascularization: from indication to procedural optimization. Trends Cardiovasc Med 2023; 33:92-106. [PMID: 34728349 DOI: 10.1016/j.tcm.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Angiography alone is the most commonly used imaging modality for guidance of percutaneous coronary interventions. Angiography is limited, however, by several factors, including that it only portrays a low resolution, two-dimensional outline of the lumen and does not inform on plaque composition and functional stenosis severity. Optical coherence tomography (OCT) is an intracoronary imaging technique that has superior spatial resolution compared to all other imaging modalities. High-resolution imaging of the vascular wall enables precise measurement of vessel wall and luminal dimensions, more accurately informing about the anatomic severity of epicardial stenoses, and also provides input for computational models to assess functional severity. The very high-resolution images also permit plaque characterization that may be informative for prognostication. Moreover, periprocedural imaging provides valuable information to guide lesion preparation, stent implantation and to evaluate acute stent complications for which iterative treatment might reduce the occurrence of major adverse stent events. As such, OCT represent a potential future all-in-one tool that provides the data necessary to establish the indications, procedural planning and optimization, and final evaluation of percutaneous coronary revascularization.
Collapse
Affiliation(s)
- Rick Volleberg
- Department of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | - Jan-Quinten Mol
- Department of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | - Dirk van der Heijden
- Department of Cardiology, Haaglanden Medisch Centrum, the Hague, the Netherlands
| | | | | | - Javier Escaned
- Department of Cardiology, Hospital Clínico San Carlos El Instituto de Investigación Sanitaria del Hospital Clinic San Carlos and Universidad Complutense de Madrid, Madrid, Spain
| | - Niels Holm
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Tom Adriaenssens
- Department of Cardiovascular Medicine, University Hospital Leuven, Leuven, Belgium
| | | | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome Italy
| | - Gregg Stone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Niels van Royen
- Department of Cardiology, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Ziedses des Plantes AC, Scoccia A, Gijsen F, van Soest G, Daemen J. Intravascular Imaging-Derived Physiology-Basic Principles and Clinical Application. Interv Cardiol Clin 2023; 12:83-94. [PMID: 36372464 DOI: 10.1016/j.iccl.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Intravascular imaging-derived physiology is emerging as a promising tool allowing simultaneous anatomic and functional lesion assessment. Recently, several optical coherence tomography-based and intravascular ultrasound-based fractional flow reserve (FFR) indices have been developed that compute FFR through computational fluid dynamics, fluid dynamics equations, or machine-learning methods. This review aims to provide an overview of the currently available intravascular imaging-based physiologic indices, their diagnostic performance, and clinical application.
Collapse
Affiliation(s)
- Annemieke C Ziedses des Plantes
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Alessandra Scoccia
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Frank Gijsen
- Department of Biomedical Engineering, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Gijs van Soest
- Department of Biomedical Engineering, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Joost Daemen
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Seike F, Mintz GS, Matsumura M, Ali ZA, Liu M, Jeremias A, Ben-Yehuda O, De Bruyne B, Serruys PW, Yasuda K, Stone GW, Maehara A. Impact of Intravascular Ultrasound-Derived Lesion-Specific Virtual Fractional Flow Reserve Predicts 3-Year Outcomes of Untreated Nonculprit Lesions: The PROSPECT Study. Circ Cardiovasc Interv 2022; 15:851-860. [PMID: 36378741 DOI: 10.1161/circinterventions.121.011198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hemodynamic assessment of untreated nonculprit lesions was not studied in the PROSPECT study (Providing Regional Observations to Study Predictors of Events in the Coronary Tree). We developed a virtual intravascular ultrasound-derived lesion-specific fractional flow reserve (lesion-specific IVUS-FFR) algorithm to assess individual lesion-level FFR. We sought to investigate the relation between lesion-specific IVUS-FFR and major adverse cardiovascular events (MACE) arising from untreated nonculprit lesions in the PROSPECT study. METHODS In PROSPECT, 697 patients with acute coronary syndromes underwent 3-vessel grayscale and virtual histology-IVUS to correlate untreated nonculprit plaque morphology with 3-year nonculprit related MACE (composite of cardiac death, cardiac arrest, myocardial infarction, or rehospitalization due to unstable or progressive angina). Lesion-specific IVUS-FFR was calculated from volumetric IVUS lumen area measurements at 0.4 mm intervals by applying a mathematical circulation model using basic fluid dynamics equations. RESULTS Lesion-specific IVUS-FFR was analyzable in 3227 nonculprit lesions in 660 patients among whom 54 nonculprit MACE events (3 myocardial infarctions) occurred at median 3.4-year follow-up. By receiver-operating characteristic analysis, the best cutoff value of lesion-specific IVUS-FFR to predict nonculprit MACE was ≤0.95. After adjusting for patient and lesion characteristics, lesion-specific IVUS-FFR (hazard ratio, 4.83 [95% CI, 2.20-10.61]; P<0.001) was an independent predictor of 3-year nonculprit MACE, in addition to minimum lumen area≤4.0 mm2, plaque burden ≥70%, and virtual histology thin-cap fibroatheroma. CONCLUSIONS Minor reductions in lesion-specific IVUS-FFR were independently associated with future nonculprit MACE arising from untreated angiographically mild stenoses along with previously established high-risk lesion morphological characteristics. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT00180466.
Collapse
Affiliation(s)
- Fumiyasu Seike
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.).,NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY (F.S., A.M.)
| | - Gary S Mintz
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.)
| | - Mitsuaki Matsumura
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.)
| | - Ziad A Ali
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.).,St. Francis Hospital, Roslyn, NY (Z.A.A., A.J.)
| | - Mengdan Liu
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.)
| | - Allen Jeremias
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.).,St. Francis Hospital, Roslyn, NY (Z.A.A., A.J.)
| | - Ori Ben-Yehuda
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.).,Division of Cardiology, University of California, San Diego (O.B.-Y.)
| | | | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway (P.W.S.).,Department of Cardiology, Imperial College of London, United Kingdom (P.W.S.)
| | - Kazunori Yasuda
- Department of Mechanical Engineering, Ehime University Graduate School of Science and Engineering, Matsuyama, Japan (K.Y.)
| | - Gregg W Stone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (G.W.S.)
| | - Akiko Maehara
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY (F.S., G.S.M., M.M., Z.A.A., M.L., A.J., O.B.-Y., A.M.).,NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY (F.S., A.M.)
| |
Collapse
|
15
|
Kakizaki S, Otake H, Seike F, Kawamori H, Toba T, Nakano S, Tanimura K, Takahashi Y, Fukuyama Y, Fujimoto D, Nakamura K, Fujii H, Kozuki A, Shite J, Iwasaki M, Takaya T, Yamaguchi O, Hirata KI. Optical Coherence Tomography Fractional Flow Reserve and Cardiovascular Outcomes in Patients With Acute Coronary Syndrome. JACC Cardiovasc Interv 2022; 15:2035-2048. [PMID: 36182656 DOI: 10.1016/j.jcin.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Optical coherence tomography-derived fractional flow reserve (OCT-FFR) correlates strongly with wire-based FFR; however, its clinical significance remains uncertain. OBJECTIVES The study sought to investigate the relationship between post-percutaneous coronary intervention (PCI) OCT-FFR and long-term clinical outcomes in acute coronary syndrome (ACS). METHODS This retrospective, multicenter, observational cohort study included consecutive patients with ACS who underwent OCT-guided emergency PCI. We analyzed post-PCI OCT images and calculated OCT-FFR to identify independent factors associated with target vessel failure (TVF) after PCI. RESULTS Among 364 enrolled patients, 54 experienced TVF during a median follow-up of 36 (IQR: 26-48) months. Vessel-level OCT-FFR was significantly lower in the TVF group than in the non-TVF group (0.87 vs 0.94; P < 0.001). In the multivariable Cox regression analysis, low vessel-level OCT-FFR (HR per 0.1 increase: 0.38; 95% CI: 0.29-0.49; P < 0.001) and thin-cap fibroatheroma in the nonculprit lesion were independently associated with TVF. The TVF rate of vessels with both low vessel-level OCT-FFR (<0.90) and thin-cap fibroatheroma in the nonculprit lesion was 8.1 times higher than that of all other vessels (69.3% vs 12.4%; HR: 8.13; 95% CI: 4.33-15.25; log-rank P < 0.001). Furthermore, adding vessel-level OCT-FFR to baseline characteristics and post-PCI OCT findings improved discriminatory and reclassification ability in identifying patients with subsequent TVF. CONCLUSIONS Vessel-level OCT-FFR was an independent factor associated with TVF after PCI in patients with ACS. Adding the OCT-FFR measurement to post-PCI OCT findings may enable better discrimination of patients with subsequent TVF after PCI for ACS. (Relationship between Intracoronary Optical Coherence Tomography Derived Virtual Fractional Flow Reserve and cardiovascular outcome on Acute coronary syndrome; UMIN000043858).
Collapse
Affiliation(s)
- Shunsuke Kakizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Fumiyasu Seike
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Kawamori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Toba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Nakano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kosuke Tanimura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Takahashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Fukuyama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daichi Fujimoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Nakamura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Fujii
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Amane Kozuki
- Division of Cardiovascular Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Junya Shite
- Division of Cardiovascular Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Masamichi Iwasaki
- Department of Cardiology, Hyogo Prefectural Awaji Medical Center, Sumoto, Japan
| | - Tomofumi Takaya
- Division of Cardiovascular Medicine, Hyogo Prefectural Himeji Cardiovascular Center, Himeji, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
16
|
Samady H, Jaber W. Harnessing Vascular Biology and Fluid Dynamics to Risk Stratify Patients With Acute Coronary Syndromes. JACC Cardiovasc Interv 2022; 15:2049-2051. [DOI: 10.1016/j.jcin.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
17
|
Clinical Utility of Intravascular Imaging. JACC: CARDIOVASCULAR IMAGING 2022; 15:1799-1820. [DOI: 10.1016/j.jcmg.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
|
18
|
Zhai C, Fan H, Zhu Y, Chen Y, Shen L. Coronary functional assessment in non-obstructive coronary artery disease: Present situation and future direction. Front Cardiovasc Med 2022; 9:934279. [PMID: 36082113 PMCID: PMC9445206 DOI: 10.3389/fcvm.2022.934279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Non-obstructive coronary artery disease (CAD), which is defined as coronary stenosis <50%, has been increasingly recognized as an emerging entity in clinical practice. Vasomotion abnormality and coronary microvascular dysfunction are two major mechanisms contributing to the occur of angina with non-obstructive CAD. Although routine coronary functional assessment is limited due to several disadvantages, functional evaluation can help to understand the pathophysiological mechanism and/or to exclude specific etiologies. In this review, we summarized the potential mechanisms involved in ischemia with non-obstructive coronary arteries (INOCA) and myocardial infarction with non-obstructive coronary arteries (MINOCA), the two major form of non-obstructive CAD. Additionally, we reviewed currently available functional assessment indices and their use in non-obstructive CAD. Furthermore, we speculated that novel technique combined anatomic and physiologic parameters might provide more individualized therapeutic choice for patients with non-obstructive CAD.
Collapse
Affiliation(s)
- Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongyan Fan
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yujuan Zhu
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Liang Shen
| |
Collapse
|
19
|
Towards a Deep-Learning Approach for Prediction of Fractional Flow Reserve from Optical Coherence Tomography. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease (CVD) is the number one cause of death worldwide, and coronary artery disease (CAD) is the most prevalent CVD, accounting for 42% of these deaths. In view of the limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has been introduced as a functional diagnostic index. Herein, we evaluate the feasibility of using deep neural networks (DNN) in an ensemble approach to predict the invasively measured FFR from raw anatomical information that is extracted from optical coherence tomography (OCT). We evaluate the performance of various DNN architectures under different formulations: regression, classification—standard, and few-shot learning (FSL) on a dataset containing 102 intermediate lesions from 80 patients. The FSL approach that is based on a convolutional neural network leads to slightly better results compared to the standard classification: the per-lesion accuracy, sensitivity, and specificity were 77.5%, 72.9%, and 81.5%, respectively. However, since the 95% confidence intervals overlap, the differences are statistically not significant. The main findings of this study can be summarized as follows: (1) Deep-learning (DL)-based FFR prediction from reduced-order raw anatomical data is feasible in intermediate coronary artery lesions; (2) DL-based FFR prediction provides superior diagnostic performance compared to baseline approaches that are based on minimal lumen diameter and percentage diameter stenosis; and (3) the FFR prediction performance increases quasi-linearly with the dataset size, indicating that a larger train dataset will likely lead to superior diagnostic performance.
Collapse
|
20
|
Fractional Flow Reserve (FFR) Estimation from OCT-Based CFD Simulations: Role of Side Branches. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 36313242 PMCID: PMC9611764 DOI: 10.3390/app12115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The computational fluid dynamic method has been widely used to quantify the hemodynamic alterations in a diseased artery and investigate surgery outcomes. The artery model reconstructed based on optical coherence tomography (OCT) images generally does not include the side branches. However, the side branches may significantly affect the hemodynamic assessment in a clinical setting, i.e., the fractional flow reserve (FFR), defined as the ratio of mean distal coronary pressure to mean aortic pressure. In this work, the effect of the side branches on FFR estimation was inspected with both idealized and optical coherence tomography (OCT)-reconstructed coronary artery models. The electrical analogy of blood flow was further used to understand the impact of the side branches (diameter and location) on FFR estimation. Results have shown that the side branches decrease the total resistance of the vessel tree, resulting in a higher inlet flowrate. The side branches located at the downstream of the stenosis led to a lower FFR value, while the ones at the upstream had a minimal impact on the FFR estimation. Side branches with a diameter larger than one third of the main vessel diameter are suggested to be considered for a proper FFR estimation. The findings in this study could be extended to other coronary artery imaging modalities and facilitate treatment planning.
Collapse
|
21
|
Takahashi T, Shin D, Kuno T, Lee JM, Latib A, Fearon WF, Maehara A, Kobayashi Y. Diagnostic performance of fractional flow reserve derived from coronary angiography, intravascular ultrasound, and optical coherence tomography; a meta-analysis. J Cardiol 2022; 80:1-8. [DOI: 10.1016/j.jjcc.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
|
22
|
Coronary physiologic assessment based on angiography and intracoronary imaging. J Cardiol 2021; 79:71-78. [PMID: 34384666 DOI: 10.1016/j.jjcc.2021.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/20/2023]
Abstract
Despite the current evidence supporting clinical benefits of fractional flow reserve (FFR), its uptake in the cardiac catheterization laboratory has been slow due to procedural cost and increased time with the need for maximum hyperemia. Recently, novel physiological indices derived from coronary angiography and intracoronary imaging have emerged to overcome issues with a wire-based FFR. Angiography-based FFR can be measured without vessel instrumentation and has shown excellent diagnostic performance using wire-based FFR as the reference standard. Thus, angiography-based FFR may facilitate coronary functional assessment before and after percutaneous coronary intervention (PCI). Angiography-based index of microcirculatory resistance (IMR) is another new computational index for assessing the coronary microcirculation. Although angiography-derived IMR remains in an early phase of development and requires further validation, its less-invasive nature may help broaden the adoption of microvascular functional assessment in various conditions such as myocardial infarction and cardiac allograft vasculopathy. Lastly, computational FFR based on intravascular ultrasound and optical coherence tomography allows detailed lesion assessment from both morphological and functional standpoints. Given a growing interest in physiology-guided PCI optimization strategies, intravascular imaging-based FFR may become the main assessment tool to confirm successful PCI.
Collapse
|
23
|
Tu S, Westra J, Adjedj J, Ding D, Liang F, Xu B, Holm NR, Reiber JHC, Wijns W. Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation. Eur Heart J 2021; 41:3271-3279. [PMID: 31886479 DOI: 10.1093/eurheartj/ehz918] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/27/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Fractional flow reserve (FFR) and instantaneous wave-free ratio are the present standard diagnostic methods for invasive assessment of the functional significance of epicardial coronary stenosis. Despite the overall trend towards more physiology-guided revascularization, there remains a gap between guideline recommendations and the clinical adoption of functional evaluation of stenosis severity. A number of image-based approaches have been proposed to compute FFR without the use of pressure wire and induced hyperaemia. In order to better understand these emerging technologies, we sought to highlight the principles, diagnostic performance, clinical applications, practical aspects, and current challenges of computational physiology in the catheterization laboratory. Computational FFR has the potential to expand and facilitate the use of physiology for diagnosis, procedural guidance, and evaluation of therapies, with anticipated impact on resource utilization and patient outcomes.
Collapse
Affiliation(s)
- Shengxian Tu
- School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Shanghai 200030, China
| | - Jelmer Westra
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Julien Adjedj
- Cardiology Department, Arnault Tzanck Institute, 171 Rue du Commandant Gaston Cahuzac, 06700 Saint-Laurent-du-Var, France.,Cardiology Department, CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Daixin Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Shanghai 200030, China
| | - Fuyou Liang
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Institute for Personalized Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia
| | - Bo Xu
- Catheterization Laboratories, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Cardiovascular Diseases, A 167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Niels Ramsing Holm
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Johan H C Reiber
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - William Wijns
- The Lambe Institute for Translational Medicine and Curam, National University of Ireland Galway, University Road, Galway H91 TK3, Ireland
| |
Collapse
|
24
|
DE Maria GL, Wopperer S, Kotronias R, Shanmuganathan M, Scarsini R, Terentes-Printzios D, Banning AP, Garcia-Garcia HM. From anatomy to function and then back to anatomy: invasive assessment of myocardial ischemia in the catheterization laboratory based on anatomy-derived indices of coronary physiology. Minerva Cardiol Angiol 2021; 69:626-640. [PMID: 33703856 DOI: 10.23736/s2724-5683.20.05486-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many decades, the severity of coronary artery disease (CAD) and the indication to proceed with either percutaneous coronary intervention (PCI) or surgical revascularization has been based on anatomically derived parameters of vessel stenosis, and typically on the percentage of lumen diameter stenosis (DS%) as determined by invasive coronary angiography (CA). However, it is currently a well-accepted concept that pre-specified thresholds of DS% have a weak correlation with the ischemic and functional potential of an epicardial coronary stenosis. In this regard, the introduction of fractional-flow reserve (FFR) has represented a paradigm-shift in the understanding, diagnosis, and treatment of CAD, but the adoption of FFR into the clinical practice remains surprisingly limited and sub-standard, probably because of the inherent drawbacks of pressure-wire-based technology such as additional costs, prolonged procedural time, invasive instrumentation of the target vessel, and use of vaso-dilatory agents causing side effects for patients. For this reason, new modalities are under development or validation to derive FFR from computational fluid dynamics (CFD) applied to a three-dimensional model (3D) of the target vessel obtained from CA, intravascular imaging, or coronary computed tomography angiography. The purpose of this review was to describe the technical details of these anatomy-derived indices of coronary physiology with a special focus on summarizing their workflow, available evidence, and future perspectives about their application in the clinical practice.
Collapse
Affiliation(s)
- Giovanni L DE Maria
- Oxford Heart Center, John Radcliffe Hospital, Oxford, UK - .,Oxford University Hospitals - NHS Foundation Trust, Oxford, UK -
| | - Samuel Wopperer
- MedStar Washington Hospital Center, Department of Interventional Cardiology, Washington DC, WA, USA
| | - Rafail Kotronias
- Oxford Heart Center, John Radcliffe Hospital, Oxford, UK.,Oxford University Hospitals - NHS Foundation Trust, Oxford, UK
| | - Mayooran Shanmuganathan
- Oxford Heart Center, John Radcliffe Hospital, Oxford, UK.,Oxford University Hospitals - NHS Foundation Trust, Oxford, UK
| | - Roberto Scarsini
- Oxford Heart Center, John Radcliffe Hospital, Oxford, UK.,Oxford University Hospitals - NHS Foundation Trust, Oxford, UK.,Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Dimitrios Terentes-Printzios
- Oxford Heart Center, John Radcliffe Hospital, Oxford, UK.,Oxford University Hospitals - NHS Foundation Trust, Oxford, UK
| | - Adrian P Banning
- Oxford Heart Center, John Radcliffe Hospital, Oxford, UK.,Oxford University Hospitals - NHS Foundation Trust, Oxford, UK
| | - Hector M Garcia-Garcia
- MedStar Washington Hospital Center, Department of Interventional Cardiology, Washington DC, WA, USA
| |
Collapse
|
25
|
Maehara A. Optical Coherence Tomography Versus Intravascular Ultrasound Versus Angiography, Once Again. Circ Cardiovasc Interv 2021; 14:e010593. [PMID: 33685219 DOI: 10.1161/circinterventions.121.010593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Akiko Maehara
- Clinical Trials Center, Cardiovascular Research Foundation, NY. Division of Cardiology, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center
| |
Collapse
|
26
|
Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study. Sci Rep 2020; 10:20421. [PMID: 33235309 PMCID: PMC7686372 DOI: 10.1038/s41598-020-77507-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Machine learning approaches using intravascular optical coherence tomography (OCT) to predict fractional flow reserve (FFR) have not been investigated. Both OCT and FFR data were obtained for left anterior descending artery lesions in 125 patients. Training and testing groups were partitioned in the ratio of 5:1. The OCT-based machine learning-FFR was derived for the testing group and compared with wire-based FFR in terms of ischemia diagnosis (FFR ≤ 0.8). The OCT-based machine learning-FFR showed good correlation (r = 0.853, P < 0.001) with the wire-based FFR. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the OCT-based machine learning-FFR for the testing group were 100%, 92.9%, 87.5%, 100%, and 95.2%, respectively. The OCT-based machine learning-FFR can be used to simultaneously acquire information on both image and functional modalities using one procedure, suggesting that it may provide optimized treatments for intermediate coronary artery stenosis.
Collapse
|
27
|
Ono M, Kawashima H, Hara H, Gao C, Wang R, Kogame N, Takahashi K, Chichareon P, Modolo R, Tomaniak M, Wykrzykowska JJ, Piek JJ, Mori I, Courtney BK, Wijns W, Sharif F, Bourantas C, Onuma Y, Serruys PW. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front Cardiovasc Med 2020; 7:119. [PMID: 32850981 PMCID: PMC7411139 DOI: 10.3389/fcvm.2020.00119] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have been developed and improved as both diagnostic and guidance tools for interventional procedures over the past three decades. IVUS has a resolution of 100 μm with a high tissue penetration and capability of assessing the entire structure of a coronary artery including the external elastic membrane, whereas OCT has a higher resolution of 10–20 μm to assess endoluminal structures with a limited tissue penetration compared to IVUS. Recently, two companies, CONAVI and TERUMO, integrated IVUS and OCT into a single catheter system. With their inherent strength and limitations, the combined IVUS and OCT probes are complementary and work synergistically to enable a comprehensive depiction of coronary artery. In this review, we summarize the performance of the two intracoronary imaging modalities—IVUS and OCT—and discuss the expected potential of the novel hybrid IVUS–OCT catheter system in the clinical field.
Collapse
Affiliation(s)
- Masafumi Ono
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Hideyuki Kawashima
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Hironori Hara
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, Netherlands.,Depatrment of Cardiology, Xijing hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, Netherlands.,Depatrment of Cardiology, Xijing hospital, Xi'an, China
| | - Norihiro Kogame
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kuniaki Takahashi
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ply Chichareon
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Rodrigo Modolo
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Cardiology Division, Department of Internal Medicine, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariusz Tomaniak
- Thoraxcentre, Erasmus Medical Centre, Rotterdam, Netherlands.,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna J Wykrzykowska
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Brian K Courtney
- Schulich Heart Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Conavi Medical, North York, ON, Canada
| | - William Wijns
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | | | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| |
Collapse
|
28
|
Tanabe Y, Kido T, Kurata A, Uetani T, Kuwahara N, Morikawa T, Kawaguchi N, Kido T, Nishimura K, Ikeda S, Yamaguchi O, Mochizuki T. Combined assessment of subtended myocardial volume and myocardial blood flow for diagnosis of obstructive coronary artery disease using cardiac computed tomography: A feasibility study. J Cardiol 2020; 76:259-265. [PMID: 32359811 DOI: 10.1016/j.jjcc.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND This study aimed to evaluate the combined diagnostic performance of coronary artery stenosis-subtended myocardial volume (Vsub) and myocardial blood flow (MBFsub) on computed tomography (CT) for detecting obstructive coronary artery disease (CAD) assessed by invasive coronary angiography (ICA) and fractional flow reserve (FFR). METHODS Thirty-nine patients who underwent coronary CT angiography (CTA) and stress dynamic myocardial CT perfusion (CTP) prior to ICA were enrolled. Obstructive CAD was defined as severe (≥70%) or moderate (30-69%) stenosis with FFR ≤0.8 on ICA. The Vsub was semi-automatically calculated from coronary CTA data using Voronoi diagram-based myocardial segmentation. The standard CT-MBF based on the 17-segment model was calculated using dynamic stress CTP data and deconvolution analysis. The CT-MBFsub was automatically analyzed by integrating the CT-MBF and Voronoi diagram-based myocardial segmentation analyses. The diagnostic performance of combined CT-MBFsub and Vsub assessment was determined using receiver operating characteristic analysis and compared with standard CT-MBF and CT-MBFsub. RESULTS Of 117 vessels in 39 patients, 72 vessels were suspected of significant stenosis on CTA and 33 vessels had obstructive CAD on ICA and FFR. The sensitivity and specificity for identifying obstructive CAD were 67% and 82% for standard CT-MBF, 70% and 77% for CT-MBFsub, and 85% and 82% for combined CT-MBFsub and Vsub assessment. The area under the receiver operating characteristic curve of the combined CT-MBFsub and Vsub assessment was significantly higher than those of standard CT-MBF and CT-MBFsub (0.89 vs. 0.75, 0.77; p<0.05). CONCLUSIONS The Vsub may aid in increasing the diagnostic performance of CT-MBFsub for detecting obstructive CAD.
Collapse
Affiliation(s)
- Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan.
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Natsumi Kuwahara
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Tomoro Morikawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Kazuhisa Nishimura
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Shuntaro Ikeda
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| |
Collapse
|
29
|
De Maria GL, Garcia-Garcia HM, Scarsini R, Hideo-Kajita A, Gonzalo López N, Leone AM, Sarno G, Daemen J, Shlofmitz E, Jeremias A, Tebaldi M, Bezerra HG, Tu S, Lemos PA, Ozaki Y, Dan K, Collet C, Banning AP, Barbato E, Johnson NP, Waksman R. Novel Indices of Coronary Physiology. Circ Cardiovasc Interv 2020; 13:e008487. [DOI: 10.1161/circinterventions.119.008487] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fractional flow reserve is the current invasive gold standard for assessing the ischemic potential of an angiographically intermediate coronary stenosis. Procedural cost and time, the need for coronary vessel instrumentation, and the need to administer adenosine to achieve maximal hyperemia remain integral components of invasive fractional flow reserve. The number of new alternatives to fractional flow reserve has proliferated over the last ten years using techniques ranging from alternative pressure wire metrics to anatomic simulation via angiography or intravascular imaging. This review article provides a critical description of the currently available or under-development alternatives to fractional flow reserve with a special focus on the available evidence, pros, and cons for each with a view towards their clinical application in the near future for the functional assessment of coronary artery disease.
Collapse
Affiliation(s)
- Giovanni Luigi De Maria
- Heart Centre, John Radcliffe Hospital, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom (G.L.D.M., R.S., A.P.B.)
| | - Hector M. Garcia-Garcia
- MedStar Washington Hospital Centre, Interventional Cardiology Department, Washington, DC (Y.O., H.M.G.-G., A.H.-K., E.S., K.D., R.W.)
| | - Roberto Scarsini
- Heart Centre, John Radcliffe Hospital, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom (G.L.D.M., R.S., A.P.B.)
| | - Alexandre Hideo-Kajita
- MedStar Washington Hospital Centre, Interventional Cardiology Department, Washington, DC (Y.O., H.M.G.-G., A.H.-K., E.S., K.D., R.W.)
| | - Nieves Gonzalo López
- Interventional Cardiology Department, Hospital Clinico San Carlos, Madrid, Spain (N.G.L.)
| | | | - Giovanna Sarno
- Interventional Cardiology Department, Uppsala University, Sweden (G.S.)
| | - Joost Daemen
- Interventional Cardiologist at Erasmus University Rotterdam, the Netherlands (J.D.)
| | - Evan Shlofmitz
- MedStar Washington Hospital Centre, Interventional Cardiology Department, Washington, DC (Y.O., H.M.G.-G., A.H.-K., E.S., K.D., R.W.)
| | - Allen Jeremias
- Cardiac Catheterization Laboratory, St. Francis Hospital, Roslyn, NY (A.J.)
| | - Matteo Tebaldi
- Department of Cardiology, University of Ferrara, Italy (M.T.)
| | | | - Shengxian Tu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, China (S.T.)
| | - Pedro A. Lemos
- Instituto do Coracao (InCor), Universidade de São Paulo, Brazil (P.A.L.)
- Hospital Israelita Albert Einstein, Brazil (P.A.L.)
| | - Yuichi Ozaki
- MedStar Washington Hospital Centre, Interventional Cardiology Department, Washington, DC (Y.O., H.M.G.-G., A.H.-K., E.S., K.D., R.W.)
| | - Kazuhiro Dan
- MedStar Washington Hospital Centre, Interventional Cardiology Department, Washington, DC (Y.O., H.M.G.-G., A.H.-K., E.S., K.D., R.W.)
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Belgium (C.C.)
| | - Adrian P. Banning
- Heart Centre, John Radcliffe Hospital, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom (G.L.D.M., R.S., A.P.B.)
| | - Emanuele Barbato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy (E.B.)
| | - Nils P. Johnson
- McGovern Medical School at UTHealth and Memorial Hermann Hospital, Houston, TX (N.P.J.)
| | - Ron Waksman
- MedStar Washington Hospital Centre, Interventional Cardiology Department, Washington, DC (Y.O., H.M.G.-G., A.H.-K., E.S., K.D., R.W.)
| |
Collapse
|
30
|
Gao Z, Wang X, Sun S, Wu D, Bai J, Yin Y, Liu X, Zhang H, de Albuquerque VHC. Learning physical properties in complex visual scenes: An intelligent machine for perceiving blood flow dynamics from static CT angiography imaging. Neural Netw 2020; 123:82-93. [DOI: 10.1016/j.neunet.2019.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
|
31
|
Nagamatsu S, Sakamoto K, Yamashita T, Sato R, Tabata N, Motozato K, Yamanaga K, Ito M, Fujisue K, Kanazawa H, Sueta D, Usuku H, Araki S, Arima Y, Takashio S, Suzuki S, Yamamoto E, Izumiya Y, Soejima H, Utsunomiya D, Kaikita K, Yamashita Y, Tsujita K. Impact of hydrostatic pressure on fractional flow reserve: in vivo experimental study of anatomical height difference of coronary arteries. J Cardiol 2020; 76:73-79. [PMID: 32089479 DOI: 10.1016/j.jjcc.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although pressure equalization of the sensor-tipped guidewire and systemic pressure is mandatory in measuring fractional flow reserve (FFR), pressure in the distal artery (Pd) with wire advancement can be influenced by hydrostatic pressure related to the height difference between the catheter tip and the distal pressure sensor. We therefore analyzed the impact of hydrostatic pressure on FFR in vivo by modification of the height difference. METHODS To reveal the anatomical height difference in human coronary arteries, measurement was performed during computed tomography angiography (CTA) of five consecutive patients. Utilizing the healthy coronary arteries of female swine, height difference diversity was reproduced by body rotation and vertical inclination. FFR measurements were performed during maximum hyperemia with adenosine. The height difference was calculated fluoroscopically with a contrast medium-filled balloon for reference. RESULTS In human coronary CTA, height averages from the ostium in the left anterior descending artery (34.6 mm) were significantly higher than in the left circumflex (-15.5 mm, p = 0.008) and right coronary arteries (-2.3 mm, p = 0.008). In our swine model, reproduced height variation ranged from -7.2 cm to +6.5 cm. Mean FFR was significantly lower in positive sensor height and higher in negative sensor height compared to the reference height. Linear regression analyses revealed significant correlations between height difference and FFR, observed among all coronary arteries, as well as between the height difference and Pd-aortic pressure mismatch. Subtracting 0.622 mmHg/cm height difference from Pd could correct the expected hydrostatic pressure influence. CONCLUSION Hydrostatic pressure variation resulting from sensor height influenced FFR values might affect interpretation during FFR assessment.
Collapse
Affiliation(s)
- Suguru Nagamatsu
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| | - Takayoshi Yamashita
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Ryota Sato
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Kota Motozato
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Miwa Ito
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan; Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Satoru Suzuki
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Soejima
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Metabolic and Cardiovascular Research, Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| |
Collapse
|
32
|
Kuwahara N, Tanabe Y, Kido T, Kurata A, Uetani T, Ochi H, Kawaguchi N, Kido T, Ikeda S, Yamaguchi O, Asano M, Mochizuki T. Coronary artery stenosis-related perfusion ratio using dynamic computed tomography myocardial perfusion imaging: a pilot for identification of hemodynamically significant coronary artery disease. Cardiovasc Interv Ther 2019; 35:327-335. [PMID: 31630340 PMCID: PMC7497437 DOI: 10.1007/s12928-019-00627-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate the feasibility of the stenosis-related quantitative perfusion ratio (QPR) for detecting hemodynamically significant coronary artery disease (CAD). Twenty-seven patients were retrospectively enrolled. All patients underwent dynamic myocardial computed tomography perfusion (CTP) and coronary computed tomography angiography (CTA) before invasive coronary angiography (ICA) measuring the fractional flow reserve (FFR). Coronary lesions with FFR ≤ 0.8 were defined as hemodynamically significant CAD. The myocardial blood flow (MBF) was calculated using dynamic CTP data, and CT-QPR was calculated as the CT-MBF relative to the reference CT-MBF. The stenosis-related CT-MBF and QPR were calculated using Voronoi diagram-based myocardial segmentation from coronary CTA data. The relationships between FFR and stenosis-related CT-MBF or QPR and the diagnostic performance of the stenosis-related CT-MBF and QPR were evaluated. Of 81 vessels, FFR was measured in 39 vessels, and 20 vessels (51%) in 15 patients were diagnosed as hemodynamically significant CAD. The stenosis-related CT-QPR showed better correlation (r = 0.70, p < 0.05) than CT-MBF (r = 0.56, p < 0.05). Sensitivity and specificity for detecting hemodynamically significant CAD were 95% and 58% for CT-MBF, and 95% and 90% for CT-QPR, respectively. The area under the receiver operating characteristic curve for the CT-QPR was significantly higher than that for the CT-MBF (0.94 vs. 0.79; p < 0.05). The stenosis-related CT-QPR derived from dynamic myocardial CTP and coronary CTA showed a better correlation with FFR and a higher diagnostic performance for detecting hemodynamically significant CAD than the stenosis-related CT-MBF.
Collapse
Affiliation(s)
- Natsumi Kuwahara
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hitomi Ochi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shuntaro Ikeda
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Migiwa Asano
- Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
33
|
Akbar A, Khwaja TS, Javaid A, Kim JS, Ha J. Automated accurate lumen segmentation using L-mode interpolation for three-dimensional intravascular optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5325-5336. [PMID: 31646048 PMCID: PMC6788615 DOI: 10.1364/boe.10.005325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Intravascular optical coherence tomography (IVOCT) lumen-based computational flow dynamics (CFD) enables physiologic evaluations such as of the fractional flow reserve (FFR) and wall sheer stress. In this study, we developed an accurate, time-efficient method for extracting lumen contours of the coronary artery. The contours of cross-sectional images containing wide intimal discontinuities due to guide wire shadowing and large bifurcations were delineated by utilizing the natural longitudinal lumen continuity of the arteries. Our algorithm was applied to 5931 pre-intervention OCT images acquired from 40 patients. For a quantitative comparison, the images were also processed through manual segmentation (the reference standard) and automated ones utilizing cross-sectional and longitudinal continuities. The results showed that the proposed algorithm outperforms other schemes, exhibiting a strong correlation (R = 0.988) and overlapping and non-overlapping area ratios of 0.931 and 0.101, respectively. To examine the accuracy of the OCT-derived FFR calculated using the proposed scheme, a CFD simulation of a three-dimensional coronary geometry was performed. The strong correlation with a manual lumen-derived FFR (R = 0.978) further demonstrated the reliability and accuracy of our algorithm with potential applications in clinical settings.
Collapse
Affiliation(s)
- Arsalan Akbar
- Graduate School of Optical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05007, South Korea
| | - T. S. Khwaja
- Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05007, South Korea
| | - Ammar Javaid
- Graduate School of Optical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05007, South Korea
| | - Jun-sun Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonseiro 50–1, Seodaemun-gu, Seoul 03722, South Korea
| | - Jinyong Ha
- Graduate School of Optical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05007, South Korea
- Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05007, South Korea
| |
Collapse
|
34
|
Shibutani H, Fujii K, Matsumura K, Otagaki M, Morishita S, Bando K, Motohiro M, Umemura S, Shiojima I. Differential influence of lesion length on fractional flow reserve in intermediate coronary lesions between each coronary artery. Catheter Cardiovasc Interv 2019; 95:E168-E174. [DOI: 10.1002/ccd.28430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/26/2019] [Accepted: 07/27/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroki Shibutani
- Division of Cardiology, Department of Medicine IIKansai Medical University Hirakata Japan
| | - Kenichi Fujii
- Division of Cardiology, Department of Medicine IIKansai Medical University Hirakata Japan
| | - Koichiro Matsumura
- Department of CardiologyKansai Medical University Medical Center Moriguchi Japan
| | - Munemitsu Otagaki
- Department of CardiologyKansai Medical University Medical Center Moriguchi Japan
| | - Shun Morishita
- Division of Cardiology, Department of Medicine IIKansai Medical University Hirakata Japan
| | - Kazunori Bando
- Division of Cardiology, Department of Medicine IIKansai Medical University Hirakata Japan
| | - Masayuki Motohiro
- Division of Cardiology, Department of Medicine IIKansai Medical University Hirakata Japan
| | - Shigeo Umemura
- Division of Cardiology, Department of Medicine IIKansai Medical University Hirakata Japan
| | - Ichiro Shiojima
- Division of Cardiology, Department of Medicine IIKansai Medical University Hirakata Japan
| |
Collapse
|
35
|
Yu W, Huang J, Jia D, Chen S, Raffel OC, Ding D, Tian F, Kan J, Zhang S, Yan F, Chen Y, Bezerra HG, Wijns W, Tu S. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EUROINTERVENTION 2019; 15:189-197. [PMID: 31147309 DOI: 10.4244/eij-d-19-00182] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS A novel method for computation of fractional flow reserve (FFR) from optical coherence tomography (OCT) was developed recently. This study aimed to evaluate the diagnostic accuracy of a new OCT-based FFR (OFR) computational approach, using wire-based FFR as the reference standard. METHODS AND RESULTS Patients who underwent both OCT and FFR prior to intervention were analysed. The lumen of the interrogated vessel and the ostia of the side branches were automatically delineated and used to compute OFR. Bifurcation fractal laws were applied to correct the change in reference lumen size due to the step-down phenomenon. OFR was compared with FFR, both using a cut-off value of 0.80 to define ischaemia. Computational analysis was performed in 125 vessels from 118 patients. Average FFR was 0.80±0.09. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for OFR to identify FFR ≤0.80 was 90% (95% CI: 84-95), 87% (95% CI: 77-94), 92% (95% CI: 82-97), 92% (95% CI: 82-97), and 88% (95% CI: 77-95), respectively. The AUC was higher for OFR than minimal lumen area (0.93 [95% CI: 0.87-0.97] versus 0.80 [95% CI: 0.72-0.86], p=0.002). Average OFR analysis time was 55±23 seconds for each OCT pullback. Intra- and inter-observer variability in OFR analysis was 0.00±0.02 and 0.00±0.03, respectively. CONCLUSIONS OFR is a novel and fast method allowing assessment of flow-limiting coronary stenosis without pressure wire and induced hyperaemia. The good diagnostic accuracy and low observer variability bear the potential of improved integration of intracoronary imaging and physiological assessment.
Collapse
Affiliation(s)
- Wei Yu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Okuya Y, Seike F, Yoneda K, Takahashi T, Kishi K, Hiasa Y. Functional assessment of tandem coronary artery stenosis by intracoronary optical coherence tomography-derived virtual fractional flow reserve: a case series. EUROPEAN HEART JOURNAL-CASE REPORTS 2019; 3:5498066. [PMID: 31449634 PMCID: PMC6601174 DOI: 10.1093/ehjcr/ytz087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 05/06/2019] [Indexed: 01/17/2023]
Abstract
Background Optical coherence tomography (OCT)-derived fractional flow reserve (FFR)—which may be calculated using fluid dynamics—demonstrated an excellent correlation with the wire-based FFR. However, the applicability of the OCT-derived FFR in the assessment of tandem lesions is currently unclear. Case summary We present two cases of tandem lesions in the mid segment of the left anterior descending (LAD) artery which could have assessed accurately by OCT-derived FFR. The first patient underwent wire-based FFR at the far distal site of LAD, showed a value of 0.66. The OCT-derived FFR was calculated, yielding a value of 0.64. In the absence of stenosis at the proximal lesion, the OCT-derived FFR was calculated as 0.79, which was as same as the wire-based FFR obtained after stenting to the proximal lesion. Thus, additional stenting was performed at the distal lesion. The second patient underwent wire-based FFR at the far distal site of LAD, showed a value of 0.76 which was as same vale as OCT-derived FFR. Considering the absence of stenosis in the proximal lesion, the OCT-derived FFR was estimated as 0.88. After coronary stenting in the proximal lesion, the wire-based FFR yielded a value of 0.90. Therefore, additional intervention to the distal lesion was deferred. Discussion The described reports are the first two cases which performed physiological assessment using OCT in tandem lesions. The OCT-derived FFR might be able to estimate the wire-based FFR and the severity of each individual lesion in patients with tandem lesions.
Collapse
Affiliation(s)
- Yoshiyuki Okuya
- Department of Cardiovascular Medicine, Tokushima Red Cross Hospital, 103 Irinoguchi, Komatsushima-cho, Komatsushima, Tokushima, Japan
| | - Fumiyasu Seike
- Department of Cardiology, Pulmonology, Hypertension, and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kohei Yoneda
- Department of Cardiovascular Medicine, Tokushima Red Cross Hospital, 103 Irinoguchi, Komatsushima-cho, Komatsushima, Tokushima, Japan
| | - Takefumi Takahashi
- Department of Cardiovascular Medicine, Tokushima Red Cross Hospital, 103 Irinoguchi, Komatsushima-cho, Komatsushima, Tokushima, Japan
| | - Koichi Kishi
- Department of Cardiovascular Medicine, Tokushima Red Cross Hospital, 103 Irinoguchi, Komatsushima-cho, Komatsushima, Tokushima, Japan
| | - Yoshikazu Hiasa
- Department of Cardiovascular Medicine, Tokushima Red Cross Hospital, 103 Irinoguchi, Komatsushima-cho, Komatsushima, Tokushima, Japan
| |
Collapse
|
37
|
Nishiyama H, Tanabe Y, Kido T, Kurata A, Uetani T, Kido T, Ikeda S, Miyagawa M, Mochizuki T. Incremental diagnostic value of whole-heart dynamic computed tomography perfusion imaging for detecting obstructive coronary artery disease. J Cardiol 2019; 73:425-431. [DOI: 10.1016/j.jjcc.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
|
38
|
Meta-Analysis of Diagnostic Performance of Instantaneous Wave-Free Ratio versus Quantitative Flow Ratio for Detecting the Functional Significance of Coronary Stenosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5828931. [PMID: 31119175 PMCID: PMC6500690 DOI: 10.1155/2019/5828931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 01/10/2023]
Abstract
Background Fractional flow reserve (FFR), as a functional measurement of coronary stenosis, is recommended for guiding revascularization in intermediate coronary lesions. However, it still remains underutilized for potential reasons including time consumption, costs, or contraindications associated with adenosine administration. Here we performed this meta-analysis to assess the diagnostic performance of two adenosine-free indices, instantaneous wave free-ratio (iFR), and quantitative flow ratio (QFR) in evaluating coronary stenosis severity with FFR as the reference standard. Methods PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched to include relevant studies with the diagnostic accuracy of iFR or QFR referenced to FFR. A bivariate model was applied to pool diagnostic parameters. We used Cochran's Q test and I2 index to assess heterogeneity and identify the potential source of heterogeneity by meta-regression. Results A total of 8213 lesions from 28 studies (19 for iFR and 9 for QFR) were included in this meta-analysis. The pooled sensitivity and specificity were 0.79 (95% CI, 0.75 to 0.83) and 0.85 (95% CI, 0.82 to 0.87) for iFR and 0.90 (95% CI, 0.84 to 0.93) and 0.88 (95% CI, 0.86 to 0.90) for QFR, respectively. Significantly higher sensitivity and specificity were observed in the bivariate analysis for QFR than for iFR (P < 0.001 for both). The area under summary receiver-operating curve of iFR and QFR was 0.89 (95% CI, 0.86 to 0.92) and 0.92 (95% CI, 0.89 to 0.94). Conclusion Evidence suggests that both of the two indices have good performance in detecting functional ischemia of coronary arteries and QFR might be a promising method without requiring the pressure wire. Further application of QFR may potentially provide important information to clinicians in the assessment of coronary lesions.
Collapse
|
39
|
|
40
|
Warisawa T, Cook CM, Akashi YJ, Davies JE. Past, Present and Future of Coronary Physiology. ACTA ACUST UNITED AC 2018; 71:656-667. [PMID: 29551700 DOI: 10.1016/j.rec.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 01/10/2023]
Abstract
It is well known that the apparent significant coronary stenosis on angiography sometimes does not cause significant ischemia, and vice versa. For this reason, decision-making based on coronary physiology is becoming more and more important. Fractional flow reserve (FFR), which has emerged as a useful tool to determine which lesions need revascularization in the catheterization laboratory, now has a class IA indication in the European Society of Cardiology guidelines. More recently, the instantaneous wave-free ratio, which is considered easier to use than FFR, has been graded as equivalent to FFR. This review discusses the concepts of FFR and instantaneous wave-free ratio, current evidence supporting their use, and future directions in coronary physiology.
Collapse
Affiliation(s)
- Takayuki Warisawa
- International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Christopher M Cook
- International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yoshihiro J Akashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Justin E Davies
- International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
41
|
Seike F, Uetani T, Nishimura K, Kawakami H, Higashi H, Fujii A, Aono J, Nagai T, Inoue K, Suzuki J, Inaba S, Okura T, Yasuda K, Higaki J, Ikeda S. Intravascular Ultrasound-Derived Virtual Fractional Flow Reserve for the Assessment of Myocardial Ischemia. Circ J 2018; 82:815-823. [DOI: 10.1253/circj.cj-17-1042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fumiyasu Seike
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Kazuhisa Nishimura
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Hiroshi Kawakami
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Haruhiko Higashi
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Akira Fujii
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Jun Aono
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Takayuki Nagai
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Katsuji Inoue
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Jun Suzuki
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | | | - Takafumi Okura
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Kazunori Yasuda
- Department of Mechanical Engineering, Ehime University Graduate School of Science and Engineering
| | - Jitsuo Higaki
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | - Shuntaro Ikeda
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| |
Collapse
|