1
|
Coleman JA, Ashkir Z, Raman B, Bueno-Orovio A. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 2023; 39:1979-1996. [PMID: 37358707 PMCID: PMC10589194 DOI: 10.1007/s10554-023-02894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
Despite the progress made in risk stratification, sudden cardiac death and heart failure remain dreaded complications for hypertrophic cardiomyopathy (HCM) patients. Myocardial ischaemia is widely acknowledged as a contributor to cardiovascular events, but the assessment of ischaemia is not yet included in HCM clinical guidelines. This review aims to evaluate the HCM-specific pro-ischaemic mechanisms and the potential prognostic value of imaging for myocardial ischaemia in HCM. A literature review was performed using PubMed to identify studies with non-invasive imaging of ischaemia (cardiovascular magnetic resonance, echocardiography, and nuclear imaging) in HCM, prioritising studies published after the last major review in 2009. Other studies, including invasive ischaemia assessment and post-mortem histology, were also considered for mechanistic or prognostic relevance. Pro-ischaemic mechanisms in HCM reviewed included the effects of sarcomeric mutations, microvascular remodelling, hypertrophy, extravascular compressive forces and left ventricular outflow tract obstruction. The relationship between ischaemia and fibrosis was re-appraised by considering segment-wise analyses in multimodal imaging studies. The prognostic significance of myocardial ischaemia in HCM was evaluated using longitudinal studies with composite endpoints, and reports of ischaemia-arrhythmia associations were further considered. The high prevalence of ischaemia in HCM is explained by several micro- and macrostructural pathological features, alongside mutation-associated energetic impairment. Ischaemia on imaging identifies a subgroup of HCM patients at higher risk of adverse cardiovascular outcomes. Ischaemic HCM phenotypes are a high-risk subgroup associated with more advanced left ventricular remodelling, but further studies are required to evaluate the independent prognostic value of non-invasive imaging for ischaemia.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Zakariye Ashkir
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Ruddy TD, Tavoosi A, Taqueti VR. Role of nuclear cardiology in diagnosis and risk stratification of coronary microvascular disease. J Nucl Cardiol 2023; 30:1327-1340. [PMID: 35851643 DOI: 10.1007/s12350-022-03051-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 10/17/2022]
Abstract
Coronary flow reserve (CFR) with positron emission tomography/computed tomography (PET/CT) has an important role in the diagnosis of coronary microvascular disease (CMD), aids risk stratification and may be useful in monitoring therapy. CMD contributes to symptoms and a worse prognosis in patients with coronary artery disease (CAD), nonischemic cardiomyopathies, and heart failure. CFR measurements may improve our understanding of the role of CMD in symptoms and prognosis in CAD and other cardiovascular diseases. The clinical presentation of CAD has changed. The prevalence of nonobstructive CAD has increased to about 50% of patients with angina undergoing angiography. Ischemia with nonobstructive arteries (INOCA) is recognized as an important cause of symptoms and has an adverse prognosis. Patients with INOCA may have ischemia due to CMD, epicardial vasospasm or diffuse nonobstructive CAD. Reduced CFR in patients with INOCA identifies a high-risk group that may benefit from management strategies specific for CMD. Although measurement of CFR by PET/CT has excellent accuracy and repeatability, use is limited by cost and availability. CFR measurement with single-photon emission tomography (SPECT) is feasible, validated, and would increase availability and use of CFR. Patients with CMD can be identified by reduced CFR and selected for specific therapies.
Collapse
Affiliation(s)
- Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
| | - Anahita Tavoosi
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Viviany R Taqueti
- Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Pelliccia F, Cecchi F, Olivotto I, Camici PG. Microvascular Dysfunction in Hypertrophic Cardiomyopathy. J Clin Med 2022; 11:jcm11216560. [PMID: 36362787 PMCID: PMC9658510 DOI: 10.3390/jcm11216560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Myocardial ischemia is an established pathophysiological feature of hypertrophic cardiomyopathy (HCM) that impacts various clinical features, including heart failure (HF) and sudden cardiac death (SCD). The major determinant of myocardial ischemia in HCM is coronary microvascular dysfunction (CMD) in the absence of epicardial coronary artery abnormalities. Despite the impossibility to directly visualize microcirculation in vivo, a multimodality approach can allow a detailed assessment of microvascular dysfunction and ischemia. Accordingly, the non-invasive assessment of CMD using transthoracic Doppler echocardiography, positron emission tomography, and cardiac magnetic resonance should now be considered mandatory in any HCM patient. Noteworthy, a complete diagnostic work-up for myocardial ischemia plays a major role in the approach of the patients with HCM and their risk stratification. Chronic and recurrent episodes of ischemia can contribute to fibrosis, culminating in LV remodeling and HF. Ischemia can potentially constitute an arrhythmic substrate and might prove to have an added value in risk stratification for SCD. Accordingly, strategies for the early diagnosis of CMD should now be considered an important challenge for the scientific community.
Collapse
Affiliation(s)
- Francesco Pelliccia
- Department of Cardiovascular Sciences, Sapienza University, 00166 Rome, Italy
- Correspondence:
| | - Franco Cecchi
- IRCCS Istituto Auxologico Italiano, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, 20100 Milan, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital and Careggi University Hospital, 50123 Florence, Italy
| | - Paolo G. Camici
- San Raffaele Hospital, Vita-Salute University, 20121 Milan, Italy
| |
Collapse
|
4
|
Grozdic Milojevic I, Kozarevic N, Sobic-Saranovic D. Novel nuclear medical procedures in the detection of microvascular dysfunction. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1143-1150. [PMID: 36218212 DOI: 10.1002/jcu.23322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Coronary microvascular dysfunction is present in two-thirds of patients showing symptoms and signs of myocardial ischemia. Their microcirculation has abnormalities due to endothelial and smooth muscle cell dysfunction. Impairment of this mechanism causes a high risk of adverse cardiovascular event. Diagnosing coronary microvascular dysfunction is challenging. Guidelines recommend the use of nuclear medicine procedures in the above-mentioned indications. Myocardial perfusion imaging with positron emission tomography is a novel procedure with high diagnostic accuracy and quality of images. It has short acquisition, low effective radiation dose and prognostic factors. There are still unknowns about this procedure and all its benefits.
Collapse
Affiliation(s)
- Isidora Grozdic Milojevic
- Center for Nuclear Medicine, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nebojsa Kozarevic
- Center for Nuclear Medicine, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dragana Sobic-Saranovic
- Center for Nuclear Medicine, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Zhan J, Zhong L, Wu J. Assessment and Treatment for Coronary Microvascular Dysfunction by Contrast Enhanced Ultrasound. Front Cardiovasc Med 2022; 9:899099. [PMID: 35795368 PMCID: PMC9251174 DOI: 10.3389/fcvm.2022.899099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
With growing evidence in clinical practice, the understanding of coronary syndromes has gradually evolved out of focusing on the well-established link between stenosis of epicardial coronary artery and myocardial ischemia to the structural and functional abnormalities at the level of coronary microcirculation, known as coronary microvascular dysfunction (CMD). CMD encompasses several pathophysiological mechanisms of coronary microcirculation and is considered as an important cause of myocardial ischemia in patients with angina symptoms without obstructive coronary artery disease (CAD). As a result of growing knowledge of the understanding of CMD assessed by multiple non-invasive modalities, CMD has also been found to be involved in other cardiovascular diseases, including primary cardiomyopathies as well as heart failure with preserved ejection fraction (HFpEF). In the past 2 decades, almost all the imaging modalities have been used to non-invasively quantify myocardial blood flow (MBF) and promote a better understanding of CMD. Myocardial contrast echocardiography (MCE) is a breakthrough as a non-invasive technique, which enables assessment of myocardial perfusion and quantification of MBF, exhibiting promising diagnostic performances that were comparable to other non-invasive techniques. With unique advantages over other non-invasive techniques, MCE has gradually developed into a novel modality for assessment of the coronary microvasculature, which may provide novel insights into the pathophysiological role of CMD in different clinical conditions. Moreover, the sonothrombolysis and the application of artificial intelligence (AI) will offer the opportunity to extend the use of contrast ultrasound theragnostics.
Collapse
|
6
|
Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A, Gilliland Y, Lester SJ, Maldonado Y, Mohiddin S, Nieman K, Sperry BW, Woo A. Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2022; 35:533-569. [PMID: 35659037 DOI: 10.1016/j.echo.2022.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by the presence of left ventricular hypertrophy in the absence of other potentially causative cardiac, systemic, syndromic, or metabolic diseases. Symptoms can be related to a range of pathophysiologic mechanisms including left ventricular outflow tract obstruction with or without significant mitral regurgitation, diastolic dysfunction with heart failure with preserved and heart failure with reduced ejection fraction, autonomic dysfunction, ischemia, and arrhythmias. Appropriate understanding and utilization of multimodality imaging is fundamental to accurate diagnosis as well as longitudinal care of patients with HCM. Resting and stress imaging provide comprehensive and complementary information to help clarify mechanism(s) responsible for symptoms such that appropriate and timely treatment strategies may be implemented. Advanced imaging is relied upon to guide certain treatment options including septal reduction therapy and mitral valve repair. Using both clinical and imaging parameters, enhanced algorithms for sudden cardiac death risk stratification facilitate selection of HCM patients most likely to benefit from implantable cardioverter-defibrillators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Saidi Mohiddin
- Inherited/Acquired Myocardial Diseases, Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Koen Nieman
- Cardiovascular Medicine and Radiology (CV Imaging), Stanford University Medical Center, CA
| | - Brett W Sperry
- Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Anna Woo
- Toronto General Hospital, Toronto, Canada
| |
Collapse
|
7
|
Kharche SR, Lemoine S, Tamasi T, Hur L, So A, McIntyre CW. Therapeutic Hypothermia Reduces Peritoneal Dialysis Induced Myocardial Blood Flow Heterogeneity and Arrhythmia. Front Med (Lausanne) 2021; 8:700824. [PMID: 34395480 PMCID: PMC8362929 DOI: 10.3389/fmed.2021.700824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Moderate therapeutic hypothermia (TH) is a well-recognized cardio-protective strategy. The instillation of fluid into the peritoneum provides an opportunity to deliver moderate hypothermia as primary prevention against cardiovascular events. We aimed to to investigate both cardiac perfusion consequences (overall blood flow and detailed assessment of perfusion heterogeneity) and subsequently simulate the associated arrhythmic risk for patients undergoing peritoneal dialysis (PD) induced TH. Methods: Patients underwent high resolution myocardial perfusion scanning using high resolution 256 slice CT scanning, at rest and with adenosine stress. The first visit using the patient's usual PD regimen, on the second visit the same regime was utilized but with cooled peritoneal dialysate at 32°C. Myocardial blood flow (MBF) was quantified from generated perfusion maps, reconstructed in 3D. MBF heterogeneity was assessed by fractal dimension (FD) measurement on the 3D left ventricular reconstruction. Arrhythmogenicity was quantified from a sophisticated computational simulation using a multi-scale human 3D ventricle wedge electrophysiological computational model. Results: We studied 7 PD patients, mean age of 60 ± 7 and mean vintage dialysis of 23.6 ± 17.6 months. There were no significant different in overall segmental MBF between normothermic condition (NT) and TH. MBF heterogeneity was significantly decreased (-14%, p = 0.03) at rest and after stress (-14%, p = 0.03) when cooling was applied. Computational simulation showed that TH allowed a normalization of action potential, QT duration and T wave. Conclusion: TH-PD results in moderate hypothermia leading to a reduction in perfusion heterogeneity and simulated risk of non-terminating malignant ventricular arrhythmias.
Collapse
Affiliation(s)
- Sanjay R. Kharche
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Sandrine Lemoine
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada
| | - Tanya Tamasi
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada
| | - Lisa Hur
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada
| | - Aaron So
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Christopher W. McIntyre
- Kidney Clinical Research Unit, Lawson's Health Research Institute, Victoria Hospital, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Coronary Microvascular Dysfunction: PET, CMR and CT Assessment. J Clin Med 2021; 10:jcm10091848. [PMID: 33922841 PMCID: PMC8123021 DOI: 10.3390/jcm10091848] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 01/05/2023] Open
Abstract
Microvascular dysfunction is responsible for chest pain in various kinds of patients, including those with obstructive coronary artery disease and persistent symptoms despite revascularization, or those with myocardial disease without coronary stenosis. Its diagnosis can be performed with an advanced imaging technique such as positron emission tomography, which represents the gold standard for diagnosing microvascular abnormalities. In recent years, cardiovascular magnetic resonance and cardiac computed tomography have demonstrated to be emerging modalities for microcirculation assessment. The identification of microvascular disease represents a fundamental step in the characterization of patients with chest pain and no epicardial coronary disease: its identification is important to manage medical strategies and improve prognosis. The present overview summarizes the main techniques and current evidence of these advanced imaging strategies in assessing microvascular dysfunction and, if present, their relationship with invasive evaluation.
Collapse
|
9
|
Abstract
Sudden cardiac death (SCD) is the worst clinical event occurring in the clinical context of cardiomyopathies. Current guidelines recommend using LV ejection fraction as the only imaging-derived parameter to identify patients who may benefit from ICD implantation in cardiomyopathies with reduced ejection fraction; however, a relevant proportion of high-risk population is left with unmet therapeutic goal. In case of dilated, hypertrophic, or arrhythmogenic cardiomyopathies, there is still a room for more sensitive and specific risk markers for identifying a cluster at higher risk of SCD. In this paper, we reviewed the evidence supporting the use of advanced echocardiography, CMR, and nuclear cardiology for SCD stratification in patients with the most common cardiomyopathies. The added value of these modalities may be explained on the basis of tissue characterization, especially scar detection, a central player in the pathogenesis of arrhythmias. Therefore, integration of these modalities to our everyday clinical practice may help in dealing with the gray zones where current guidelines are still ineffective for patient selection.
Collapse
|
10
|
Lai AC, Bienstock SW, Sharma R, Skorecki K, Beerkens F, Samtani R, Coyle A, Kim T, Baber U, Camaj A, Power D, Fuster V, Goldman ME. A Personalized Approach to Chronic Kidney Disease and Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 77:1470-1479. [PMID: 33736830 DOI: 10.1016/j.jacc.2021.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease is the most common cause of death in patients with end-stage renal disease (ESRD). The initiation of dialysis for treatment of ESRD exacerbates chronic electrolyte and hemodynamic perturbations. Rapid large shifts in effective intravascular volume and electrolyte concentrations ultimately lead to subendocardial ischemia, increased left ventricular wall mass, and diastolic dysfunction, and can precipitate serious arrhythmias through a complex pathophysiological process. These factors, unique to advanced kidney disease and its treatment, increase the overall incidence of acute coronary syndrome and sudden cardiac death. To date, risk prediction models largely fail to incorporate the observed cardiovascular mortality in the CKD population; however, multimodality imaging may provide an additional prognostication and risk stratification. This comprehensive review discusses the cardiovascular risks associated with hemodialysis, and explores the pathophysiology and the novel utilization of multimodality imaging in CKD to promote a personalized approach for these patients with implications for future research.
Collapse
Affiliation(s)
- Ashton C Lai
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | | | - Raman Sharma
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Karl Skorecki
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Frans Beerkens
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Rajeev Samtani
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Andrew Coyle
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Tonia Kim
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Usman Baber
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Anton Camaj
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - David Power
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Valentin Fuster
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Martin E Goldman
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA.
| |
Collapse
|
11
|
Rrapo Kaso E, Kramer CM. Multimodality Imaging for Hypertrophic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Liu L, Liu S, Shen L, Tu B, Hu Z, Hu F, Zheng L, Ding L, Fan X, Yao Y. Correlations between cardiac troponin I and nonsustained ventricular tachycardia in hypertrophic obstructive cardiomyopathy. Clin Cardiol 2020; 43:1150-1159. [PMID: 32810305 PMCID: PMC7534013 DOI: 10.1002/clc.23425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nonsustained ventricular tachycardia (NSVT) is an independent risk factor for sudden cardiac death (SCD) in patients with hypertrophic obstructive cardiomyopathy (HOCM). However, data concerning the correlations of cardiac biomarkers and NSVT in HOCM are rather limited. HYPOTHESIS Our study aimed to investigate the associations between the occurrence of NSVT and circulating biomarkers representing myocardial injury (cardiac troponin I, cTnI), cardiac function (N-terminal pro-brain natriuretic peptide, NT-pro BNP), and inflammation (high-sensitivity C-reactive protein) in a large Chinese HOCM cohort. METHODS A total of 755 consecutive HOCM patients were recruited. Systematic cardiac evaluations and circulating biomarkers were examined routinely in all subjects under the clinically stable status. According to the results of 24-hour Holter monitoring, patients were divided into the NSVT group (n = 138) and the nonventricular tachycardia (non-VT) group (n = 617). RESULTS Compared with the non-VT group, circulating levels of both cTnI and NT-pro BNP elevated significantly in patients with positive NSVT episodes (P < .001). Multivariable analyses demonstrated that cTnI was independently associated with the presence of NSVT (OR = 1.675, 95% CI: 1.406-1.994, P < .001). Concentrations of cTnI increased progressively not only with the aggravation of ventricular arrhythmic events (P < .001), but also with the growing risk of SCD in HOCM patients (P < .001). Serum cTnI ≥ 0.0265 ng/mL indicated predictive value for the occurrence of NSVT in the HOCM cohort (area under the curve = 0.707, 95% CI: 0.660-0.754, P < .001). CONCLUSIONS Elevated cTnI was an independent determinant of NSVT, and it seemed to be valuable for assessing the clinical status of ventricular arrhythmias and the risk of SCD in patients with HOCM.
Collapse
Affiliation(s)
- Limin Liu
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shangyu Liu
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lishui Shen
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Tu
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhicheng Hu
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Hu
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihui Zheng
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ligang Ding
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Yao
- Clinical EP Lab & Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Schindler TH, Bateman TM, Berman DS, Chareonthaitawee P, De Blanche LE, Dilsizian V, Dorbala S, Gropler RJ, Shaw L, Soman P, Winchester DE, Verberne H, Ahuja S, Beanlands RS, Di Carli MF, Murthy VL, Ruddy TD, Schwartz RG. Appropriate Use Criteria for PET Myocardial Perfusion Imaging. J Nucl Med 2020; 61:1221-1265. [PMID: 32747510 DOI: 10.2967/jnumed.120.246280] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Daniel S Berman
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Panithaya Chareonthaitawee
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,American Society of Nuclear Cardiology, Fairfax, Virginia
| | | | - Vasken Dilsizian
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,American Society of Nuclear Cardiology, Fairfax, Virginia
| | - Sharmila Dorbala
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Robert J Gropler
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Leslee Shaw
- American College of Cardiology, Washington, D.C.,Society of Cardiovascular Computed Tomography, Arlington, Virginia
| | - Prem Soman
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,American College of Cardiology, Washington, D.C
| | | | - Hein Verberne
- European Association of Nuclear Medicine, Vienna, Austria
| | - Sukhjeet Ahuja
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Rob S Beanlands
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,American Society of Nuclear Cardiology, Fairfax, Virginia.,American College of Cardiology, Washington, D.C.,Canadian Society of Cardiovascular Nuclear and CT Imaging, Ottawa, Ontario, Canada.,Canadian Cardiovascular Society, Ottawa, Ontario, Canada; and
| | - Marcelo F Di Carli
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,American Heart Association, Dallas, Texas
| | | | - Terrence D Ruddy
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,Canadian Society of Cardiovascular Nuclear and CT Imaging, Ottawa, Ontario, Canada.,Canadian Cardiovascular Society, Ottawa, Ontario, Canada; and
| | | |
Collapse
|
14
|
Schindler TH, Valenta I. Relative disagreement among different software packages in PET-flow quantitation: An appeal for consistency. J Nucl Cardiol 2020; 27:1234-1236. [PMID: 30903607 DOI: 10.1007/s12350-019-01633-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA.
| | - Ines Valenta
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| |
Collapse
|
15
|
Schindler TH, Brown DL, Sadhu JS. Adding clinical value with coronary flow assessment in hypertrophic obstructive cardiomyopathy. IJC HEART & VASCULATURE 2020; 27:100512. [PMID: 32310245 PMCID: PMC7154312 DOI: 10.1016/j.ijcha.2020.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas H. Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David L. Brown
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin S. Sadhu
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Ramchand J, Fava AM, Chetrit M, Desai MY. Advanced imaging for risk stratification of sudden death in hypertrophic cardiomyopathy. Heart 2020; 106:793-801. [DOI: 10.1136/heartjnl-2019-315176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 01/29/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac condition, which typically manifests as left ventricular hypertrophy. A small subset of patients with HCM have an increased risk of sudden cardiac death (SCD) from ventricular arrhythmias. Risk of SCD can be effectively reduced following implantation of implantable cardiac defibrillators (ICD), although this treatment carries a risk of complications such as inappropriate shocks. With this in mind, we turn to advances in cardiac imaging to guide risk stratification for SCD and to select the appropriate individual who may benefit from ICD implantation. In this review, we have taken the opportunity to briefly summarise the role of imaging in the diagnosis of HCM before focusing on how specific imaging features influence risk of SCD in patients with HCM.
Collapse
|
17
|
Lu DY, Ventoulis I, Liu H, Kudchadkar SM, Greenland GV, Yalcin H, Kontari E, Goyal S, Corona-Villalobos CP, Vakrou S, Zimmerman SL, Abraham TP, Abraham MR. Sex-specific cardiac phenotype and clinical outcomes in patients with hypertrophic cardiomyopathy. Am Heart J 2020; 219:58-69. [PMID: 31726421 DOI: 10.1016/j.ahj.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is unknown whether sex-specific differences in mortality observed in HCM are due to older age of women at presentation, or whether women have greater degree of LV myopathy than men. METHODS We retrospectively compared clinical/imaging characteristics and outcomes between women and men in our overall cohort composed of 728 HCM patients, and in an age-matched subgroup comprised of 400 age-matched patients. We examined sex-specific differences in LV myopathy, and dissected the influence of age and sex on outcomes. LV myopathy was assessed by measuring LV mass, LVEF, global peak longitudinal systolic strain (LV-GLS), diastolic function (E/A, E/e'), late gadolinium enhancement (LV-LGE) and myocardial blood flow (MBF) at rest/stress. The primary endpoint was a composite outcome, comprising heart failure (HF), atrial fibrillation (AFib), ventricular tachycardia/fibrillation (VT/VF) and death; individual outcomes were defined as the secondary endpoint. RESULTS Women in the overall cohort were older by 6 years. Women were more symptomatic and more likely to have obstructive HCM. Women had smaller LV cavity size, stroke volume and LV mass, higher indexed maximum wall thickness (IMWT), more hyperdynamic LVEF and higher/similar LV-GLS. Women had similar LV-LGE and E/A, but higher E/e' and rest/stress MBF. Female sex was independently associated with the composite outcome in the overall cohort, and with HF in the overall cohort and age-matched subgroup after adjusting for obstructive HCM, LA diameter, LV-GLS. CONCLUSIONS Our results suggest that sex-specific differences in LV geometry, hyper-contractility and diastolic function, not greater degree of LV myopathy, contribute to a higher, age-independent risk of diastolic HF in women with HCM.
Collapse
|
18
|
Positron emission tomography ( 15O-water, 11C-acetate, 11C-HED) risk markers and nonsustained ventricular tachycardia in hypertrophic cardiomyopathy. IJC HEART & VASCULATURE 2019; 26:100452. [PMID: 32140548 PMCID: PMC7046493 DOI: 10.1016/j.ijcha.2019.100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022]
Abstract
Background The objectives of the study were to describe positron emission tomography (PET) parameters, using the tracers 15O-water at rest/stress, 11C-acetate, and 11C-HED, with regard to nonsustained ventricular tachycardia (NSVT) in hypertrophic cardiomyopathy (HCM). PET offers quantitative assessment of pathophysiology throughout the left ventricular segments, including the endocardium/epicardium. The potential use PET in risk stratification remains to be elucidated. NSVT provides a marker for sudden cardiac death. Methods Patients with a validated diagnosis of HCM who had an implantable cardioverter-defibrillator were interrogated at 12 months and independently of PET-examinations. Results In total, 25 patients (mean age 56.8 ± 12.9 years, 76% males) were included and 10 reported NSVT. Mean myocardial blood flow (MBF) at rest was 0.91 ml/g/min and decreased at stress, 1.59 ml/g/min. The mean gradient (endocardium/epicardium quotient) at rest was 1.14 ± 0.09, while inverse at stress (mean 0.92 ± 0.16). Notably, MBF gradient at stress was significantly lower in patients with NSVT (p = 0.022) and borderline at rest (p = 0.059) while global MBF at rest and stress were not. Mean myocardial oxygen consumption (MVO2) was 0.088 ml/g/min (higher in NSVT, p = 0.023) and myocardial external efficiency 18.5%. Using 11C-HED, the mean retention index was 0.11 min−1 and a higher volume of distribution (p = 0.089) or transmural gradient of clearance rate (p = 0.061) or lower clearance rate (p = 0.052) showed a tendency of association of NSVT. Conclusions The endocardium/epicardium MBF gradient at stress is significantly lower in HCM patients with NSVT. This provides a novel approach to further refine risk stratification of sudden cardiac death.
Collapse
|
19
|
Liu Y, Afzal J, Vakrou S, Greenland GV, Talbot CC, Hebl VB, Guan Y, Karmali R, Tardiff JC, Leinwand LA, Olgin JE, Das S, Fukunaga R, Abraham MR. Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2019; 6:170. [PMID: 31921893 PMCID: PMC6928121 DOI: 10.3389/fcvm.2019.00170] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is characterized by myocyte hypertrophy and fibrosis. Studies in two mouse models (R92W-TnT/R403Q-MyHC) at early HCM stage revealed upregulation of endothelin (ET1) signaling in both mutants, but TGFβ signaling only in TnT mutants. Dysregulation of miR-29 expression has been implicated in cardiac fibrosis. But it is unknown whether expression of miR-29a/b/c and profibrotic genes is commonly regulated in mouse and human HCM. Methods: In order to understand mechanisms underlying fibrosis in HCM, and examine similarities/differences in expression of miR-29a/b/c and several profibrotic genes in mouse and human HCM, we performed parallel studies in rat cardiac myocyte/fibroblast cultures, examined gene expression in two mouse models of (non-obstructive) HCM (R92W-TnT, R403Q-MyHC)/controls at early (5 weeks) and established (24 weeks) disease stage, and analyzed publicly available mRNA/miRNA expression data from obstructive-HCM patients undergoing septal myectomy/controls (unused donor hearts). Results: Myocyte cultures: ET1 increased superoxide/H2O2, stimulated TGFβ expression/secretion, and suppressed miR-29a expression in myocytes. The effect of ET1 on miR-29 and TGFβ expression/secretion was antagonized by N-acetyl-cysteine, a reactive oxygen species scavenger. Fibroblast cultures: ET1 had no effect on pro-fibrotic gene expression in fibroblasts. TGFβ1/TGFβ2 suppressed miR-29a and increased collagen expression, which was abolished by miR-29a overexpression. Mouse and human HCM: Expression of miR-29a/b/c was lower, and TGFB1/collagen gene expression was higher in TnT mutant-LV at 5 and 24 weeks; no difference was observed in expression of these genes in MyHC mutant-LV and in human myectomy tissue. TGFB2 expression was higher in LV of both mutant mice and human myectomy tissue. ACE2, a negative regulator of the renin-angiotensin-aldosterone system, was the most upregulated transcript in human myectomy tissue. Pathway analysis predicted upregulation of the anti-hypertrophic/anti-fibrotic liver X receptor/retinoid X receptor (LXR/RXR) pathway only in human myectomy tissue. Conclusions: Our in vitro studies suggest that activation of ET1 signaling in cardiac myocytes increases reactive oxygen species and stimulates TGFβ secretion, which downregulates miR-29a and increases collagen in fibroblasts, thus contributing to fibrosis. Our gene expression studies in mouse and human HCM reveal allele-specific differences in miR-29 family/profibrotic gene expression in mouse HCM, and activation of anti-hypertrophic/anti-fibrotic genes and pathways in human HCM.
Collapse
Affiliation(s)
- Yamin Liu
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Junaid Afzal
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Gabriela V Greenland
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - C Conover Talbot
- Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD, United States
| | - Virginia B Hebl
- Intermountain Medical Center, Intermountain Heart Institute, Murray, UT, United States
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Rehan Karmali
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States
| | - Jil C Tardiff
- Sarver Heart Center, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, Biofrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Jeffrey E Olgin
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States
| | - Samarjit Das
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - M Roselle Abraham
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Kay GN. Can positron emission tomography help stratify the risk of sudden cardiac death in patients with hypertrophic cardiomyopathy? J Nucl Cardiol 2019; 26:1135-1137. [PMID: 29761308 DOI: 10.1007/s12350-018-1299-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/23/2022]
Affiliation(s)
- G Neal Kay
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
21
|
Bravo PE. Is there a role for cardiac positron emission tomography in hypertrophic cardiomyopathy? J Nucl Cardiol 2019; 26:1125-1134. [PMID: 29761309 DOI: 10.1007/s12350-018-1298-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Coronary microvascular dysfunction and, its functional consequence, myocardial ischemia are common pathologic features in patients with hypertrophic cardiomyopathy (HCM). Both have been commonly invoked as potential triggers of and/or contributors to the underlying pathophysiological processes leading to heart failure, and malignant ventricular arrhythmias. Positron emission tomography (PET) with myocardial blood flow quantification provides a unique opportunity to evaluate the integrity and function of the coronary microcirculation in HCM. The purpose of the present review is to summarize all the pertinent literature and future perspectives of the role of PET in the evaluation and risk stratification of patients with HCM.
Collapse
Affiliation(s)
- Paco E Bravo
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Division of Cardiology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- , 3400 Civic Center Boulevard, 11-154 South Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Schindler TH, Dilsizian V. Coronary Microvascular Dysfunction: Clinical Considerations and Noninvasive Diagnosis. JACC Cardiovasc Imaging 2019; 13:140-155. [PMID: 30982670 DOI: 10.1016/j.jcmg.2018.11.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
Chest pain in patients without obstructive coronary artery disease has been realized as a frequent problem encountered in clinical practice. Invasive flow investigations have suggested that up to two-thirds of patients with nonobstructive coronary atherosclerosis may have microvascular dysfunction (MVD). Positron emission tomography myocardial perfusion imaging in conjunction with tracer-kinetic modeling enables the concurrent quantification of myocardial blood flow (MBF) in milliliters per minute per gram of tissue. This allows the assessment of hyperemic MBFs and myocardial flow reserve for the noninvasive identification and characterization of MVD as an important functional substrate for angina symptoms amenable to intensified and individualized medical intervention with nitrates, calcium-channel blockers, statins, angiotensin-converting enzyme inhibitors, and/or angiotensin II type 1 receptor blockers. Recent investigations suggest that cardiac magnetic resonance and computed tomography may also be suitable for the noninvasive detection of MVD. Whether intensified and individualized treatment related improvement or even normalization of hyperemic MBF and/or myocardial flow reserve may lead to a persistent reduction in angina symptoms and/or improved cardiovascular outcome as compared to standard care, deserves further testing in large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| | - Vasken Dilsizian
- University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Microvascular Dysfunction in Hypertrophic Cardiomyopathy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|