1
|
Ohashi H, Mizukami T, Sonck J, Boussiet F, Ko B, Nørgaard BL, Mæng M, Jensen JM, Sakai K, Ando H, Amano T, Amabile N, Ali Z, De Bruyne B, Koo B, Otake H, Collet C. Intravascular Imaging Findings After PCI in Patients With Focal and Diffuse Coronary Artery Disease. J Am Heart Assoc 2024; 13:e032605. [PMID: 38390822 PMCID: PMC10944036 DOI: 10.1161/jaha.123.032605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Following percutaneous coronary intervention (PCI), optical coherence tomography provides prognosis information. The pullback pressure gradient is a novel index that discriminates focal from diffuse coronary artery disease based on fractional flow reserve pullbacks. We sought to investigate the association between coronary artery disease patterns, defined by coronary physiology, and optical coherence tomography after stent implantation in stable patients undergoing PCI. METHODS AND RESULTS This multicenter, prospective, single-arm study was conducted in 5 countries (NCT03782688). Subjects underwent motorized fractional flow reserve pullbacks evaluation followed by optical coherence tomography-guided PCI. Post-PCI optical coherence tomography minimum stent area, stent expansion, and the presence of suboptimal findings such as incomplete stent apposition, stent edge dissection, and irregular tissue protrusion were compared between patients with focal versus diffuse disease. Overall, 102 patients (105 vessels) were included. Fractional flow reserve before PCI was 0.65±0.14, pullback pressure gradient was 0.66±0.14, and post-PCI fractional flow reserve was 0.88±0.06. The mean minimum stent area was 5.69±1.99 mm2 and was significantly larger in vessels with focal disease (6.18±2.12 mm2 versus 5.19±1.72 mm2, P=0.01). After PCI, incomplete stent apposition, stent edge dissection, and irregular tissue protrusion were observed in 27.6%, 10.5%, and 51.4% of the cases, respectively. Vessels with focal disease at baseline had a lower prevalence of incomplete stent apposition (11.3% versus 44.2%, P=0.002) and more irregular tissue protrusion (69.8% versus 32.7%, P<0.001). CONCLUSIONS Baseline coronary pathophysiological patterns are associated with suboptimal imaging findings after PCI. Patients with focal disease had larger minimum stent area and a higher incidence of tissue protrusion, whereas stent malapposition was more frequent in patients with diffuse disease.
Collapse
Affiliation(s)
- Hirofumi Ohashi
- Cardiovascular Center AalstOLV ClinicAalstBelgium
- Department of CardiologyAichi Medical UniversityAichiJapan
| | - Takuya Mizukami
- Cardiovascular Center AalstOLV ClinicAalstBelgium
- Division of Clinical Pharmacology, Department of PharmacologyShowa UniversityTokyoJapan
- Department of Cardiovascular MedicineGifu Heart CenterGifuJapan
| | - Jeroen Sonck
- Cardiovascular Center AalstOLV ClinicAalstBelgium
| | - Frederic Boussiet
- Cardiovascular Center AalstOLV ClinicAalstBelgium
- Department of CardiologyToulouse University HospitalToulouseFrance
| | - Brian Ko
- Monash Cardiovascular Research CentreMonash University and Monash Heart, Monash HealthClaytonVictoriaAustralia
| | | | - Michael Mæng
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | | | - Koshiro Sakai
- Cardiovascular Center AalstOLV ClinicAalstBelgium
- Department of Medicine, Division of CardiologyShowa University School of MedicineTokyoJapan
| | - Hirohiko Ando
- Department of CardiologyAichi Medical UniversityAichiJapan
| | - Tetsuya Amano
- Department of CardiologyAichi Medical UniversityAichiJapan
| | - Nicolas Amabile
- Department of CardiologyInstitut Mutualiste MontsourisParisFrance
| | - Ziad Ali
- DeMatteis Cardiovascular InstituteSt. Francis Hospital & Heart CenterRoslynNY
| | - Bernard De Bruyne
- Cardiovascular Center AalstOLV ClinicAalstBelgium
- Department of CardiologyLausanne University HospitalLausanneSwitzerland
| | - Bon‐Kwon Koo
- Department of Internal Medicine and Cardiovascular CenterSeoul National University HospitalSeoulSouth Korea
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | | |
Collapse
|
2
|
Sakai K, Mizukami T, Leipsic J, Belmonte M, Sonck J, Nørgaard BL, Otake H, Ko B, Koo BK, Maeng M, Jensen JM, Buytaert D, Munhoz D, Andreini D, Ohashi H, Shinke T, Taylor CA, Barbato E, Johnson NP, De Bruyne B, Collet C. Coronary Atherosclerosis Phenotypes in Focal and Diffuse Disease. JACC Cardiovasc Imaging 2023; 16:1452-1464. [PMID: 37480908 DOI: 10.1016/j.jcmg.2023.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND The interplay between coronary hemodynamics and plaque characteristics remains poorly understood. OBJECTIVES The aim of this study was to compare atherosclerotic plaque phenotypes between focal and diffuse coronary artery disease (CAD) defined by coronary hemodynamics. METHODS This multicenter, prospective, single-arm study was conducted in 5 countries. Patients with functionally significant lesions based on an invasive fractional flow reserve ≤0.80 were included. Plaque analysis was performed by using coronary computed tomography angiography and optical coherence tomography. CAD patterns were assessed using motorized fractional flow reserve pullbacks and quantified by pullback pressure gradient (PPG). Focal and diffuse CAD was defined according to the median PPG value. RESULTS A total of 117 patients (120 vessels) were included. The median PPG was 0.66 (IQR: 0.54-0.75). According to coronary computed tomography angiography analysis, plaque burden was higher in patients with focal CAD (87% ± 8% focal vs 82% ± 10% diffuse; P = 0.003). Calcifications were significantly more prevalent in patients with diffuse CAD (Agatston score per vessel: 51 [IQR: 11-204] focal vs 158 [IQR: 52-341] diffuse; P = 0.024). According to optical coherence tomography analysis, patients with focal CAD had a significantly higher prevalence of circumferential lipid-rich plaque (37% focal vs 4% diffuse; P = 0.001) and thin-cap fibroatheroma (TCFA) (47% focal vs 10% diffuse; P = 0.002). Focal disease defined by PPG predicted the presence of TCFA with an area under the curve of 0.73 (95% CI: 0.58-0.87). CONCLUSIONS Atherosclerotic plaque phenotypes associate with intracoronary hemodynamics. Focal CAD had a higher plaque burden and was predominantly lipid-rich with a high prevalence of TCFA, whereas calcifications were more prevalent in diffuse CAD. (Precise Percutaneous Coronary Intervention Plan [P3]; NCT03782688).
Collapse
Affiliation(s)
- Koshiro Sakai
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Division of Clinical Pharmacology, Department of Pharmacology, Showa University, Tokyo, Japan; Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Jonathon Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, University of Milan, Milan, Italy; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Bjarne L Nørgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Brian Ko
- Monash Cardiovascular Research Centre, Monash University and Monash Heart, Monash Health, Clayton, Victoria, Australia
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Michael Maeng
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy; Department of Internal Medicine, Discipline of Cardiology, University of Campinas (Unicamp), Campinas, Brazil
| | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Hirofumi Ohashi
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, Aichi Medical University, Aichi, Japan
| | - Toshiro Shinke
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | | | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Nils P Johnson
- Division of Cardiology, Department of Medicine, Weatherhead PET Center, McGovern Medical School, UTHealth and Memorial Hermann Hospital, Houston, Texas, USA
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium.
| |
Collapse
|
3
|
Seegers LM, DeFaria Yeh D, Yonetsu T, Sugiyama T, Minami Y, Soeda T, Araki M, Nakajima A, Yuki H, Kinoshita D, Suzuki K, Niida T, Lee H, McNulty I, Nakamura S, Kakuta T, Fuster V, Jang IK. Sex Differences in Coronary Atherosclerotic Phenotype and Healing Pattern on Optical Coherence Tomography Imaging. Circ Cardiovasc Imaging 2023; 16:e015227. [PMID: 37503629 DOI: 10.1161/circimaging.123.015227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Layered plaque, a signature of previous plaque disruption, is a known predictor of rapid plaque progression. Layered plaque can be identified in vivo by optical coherence tomography. Studies have reported differences in plaque burden between women and men, but sex differences in the pattern of layered plaque are unknown. METHODS Preintervention optical coherence tomography images of 533 patients with chronic coronary syndromes were analyzed. Detailed plaque characteristics of layered and nonlayered plaques of the target lesion were compared between men and women. RESULTS The prevalence of layered plaque was similar between men (N=418) and women (N=115; 55% versus 54%; P=0.832). In men, more features of plaque vulnerability were identified in layered plaque than in nonlayered plaque: lipid plaque (87% versus 69%; P<0.001), macrophages (69% versus 56%; P=0.007), microvessels (72% versus 39%; P<0.001), and cholesterol crystals (49% versus 30%; P<0.001). No difference in plaque vulnerability between layered and nonlayered plaques was observed in women. Layered plaque in men had more features consistent with previous plaque rupture than in women: interrupted pattern (74% versus 52%; P<0.001) and a greater layer index (1198 [781-1835] versus 943 [624-1477]; P<0.001). CONCLUSIONS In men, layered plaques exhibit more features of vascular inflammation and vulnerability as well as evidence of previous plaque rupture, compared with nonlayered plaques, whereas in women, no difference was observed between layered and nonlayered plaques. Vascular inflammation (plaque rupture) may be the predominant mechanism of layered plaque in men, whereas a less inflammatory mechanism may play a key role in women. REGISTRATION URL: http://www. CLINICALTRIALS gov; Unique Identifier: NCT01110538, NCT04523194.
Collapse
Affiliation(s)
- Lena Marie Seegers
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Doreen DeFaria Yeh
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Taishi Yonetsu
- Department of Interventional Cardiology, Tokyo Medical and Dental University, Japan (T.Y.)
| | - Tomoyo Sugiyama
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (T.S., T.K.)
| | - Yoshiyasu Minami
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.M.)
| | - Tsunenari Soeda
- Department of Cardiovascular Medicine, Nara Prefecture General Medical Center, Japan (T.S.)
| | - Makoto Araki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Akihiro Nakajima
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Haruhito Yuki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Daisuke Kinoshita
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Keishi Suzuki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Takayuki Niida
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L.)
| | - Iris McNulty
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (L.M.S., D.D.Y., M.A., A.N., H.Y., D.K., K.S., T.N., I.M.)
| | - Sunao Nakamura
- Interventional Cardiology Unit, New Tokyo Hospital, Chiba, Japan (S.N.)
| | - Tsunekazu Kakuta
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (T.S., T.K.)
| | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York (V.F.)
| | - Ik-Kyung Jang
- Division of Cardiology, Kyung Hee University Hospital, Seoul, Korea (I.-K.J.)
| |
Collapse
|
4
|
Yuki H, Kinoshita D, Suzuki K, Niida T, Nakajima A, Seegers LM, Vergallo R, Fracassi F, Russo M, Di Vito L, Bryniarski K, McNulty I, Lee H, Kakuta T, Nakamura S, Jang IK. Layered plaque and plaque volume in patients with acute coronary syndromes. J Thromb Thrombolysis 2023; 55:432-438. [PMID: 36869878 DOI: 10.1007/s11239-023-02788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Layered plaque is a signature of previous subclinical plaque destabilization and healing. Following plaque disruption, thrombus becomes organized, resulting in creation of a new layer, which might contribute to rapid step-wise progression of the plaque. However, the relationship between layered plaque and plaque volume has not been fully elucidated. METHODS Patients who presented with acute coronary syndromes (ACS) and underwent pre-intervention optical coherence tomography (OCT) and intravascular ultrasound (IVUS) imaging of the culprit lesion were included. Layered plaque was identified by OCT, and plaque volume around the culprit lesion was measured by IVUS. RESULTS Among 150 patients (52 with layered plaque; 98 non-layered plaque), total atheroma volume (183.3 mm3[114.2 mm3 to 275.0 mm3] vs. 119.3 mm3[68.9 mm3 to 185.5 mm3], p = 0.004), percent atheroma volume (PAV) (60.1%[54.7-60.1%] vs. 53.7%[46.8-60.6%], p = 0.001), and plaque burden (86.5%[81.7-85.7%] vs. 82.6%[77.9-85.4%], p = 0.001) were significantly greater in patients with layered plaques than in those with non-layered plaques. When layered plaques were divided into multi-layered or single-layered plaques, PAV was significantly greater in patients with multi-layered plaques than in those with single-layered plaques (62.1%[56.8-67.8%] vs. 57.5%[48.9-60.1%], p = 0.017). Layered plaques, compared to those with non-layered pattern, had larger lipid index (1958.0[420.9 to 2502.9] vs. 597.2[169.1 to 1624.7], p = 0.014). CONCLUSION Layered plaques, compared to non-layered plaques, had significantly greater plaque volume and lipid index. These results indicate that plaque disruption and the subsequent healing process significantly contribute to plaque progression at the culprit lesion in patients with ACS. CLINICAL TRIAL REGISTRATION http://www. CLINICALTRIALS gov , NCT01110538, NCT03479723, UMIN000041692.
Collapse
Affiliation(s)
- Haruhito Yuki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street
- GRB 800
- , 02114, Boston, MA, USA
| | - Daisuke Kinoshita
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street
- GRB 800
- , 02114, Boston, MA, USA
| | - Keishi Suzuki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street
- GRB 800
- , 02114, Boston, MA, USA
| | - Takayuki Niida
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street
- GRB 800
- , 02114, Boston, MA, USA
| | - Akihiro Nakajima
- Interventional Cardiology Unit, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba, 270-2232, Japan
| | - Lena Marie Seegers
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street
- GRB 800
- , 02114, Boston, MA, USA
| | - Rocco Vergallo
- Interventional Cardiology Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Francesco Fracassi
- Department of Cardiology, Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Luca Di Vito
- Cardiology Unit, C. and G. Mazzoni Hospital, Via degli Iris 1, 63100, Ascoli Piceno, Italy
| | - Krzysztof Bryniarski
- Institute of Cardiology, Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Iris McNulty
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street
- GRB 800
- , 02114, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsunekazu Kakuta
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki, Japan
| | - Sunao Nakamura
- Interventional Cardiology Unit, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba, 270-2232, Japan.
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street
- GRB 800
- , 02114, Boston, MA, USA. .,Division of Cardiology, Kyung Hee University Hospital, Seoul, South Korea.
| |
Collapse
|
5
|
Clinical features and lipid profiles of plaque erosion over lipid-rich plaque versus fibrous plaque in patients with acute coronary syndrome. Atherosclerosis 2022; 360:47-52. [DOI: 10.1016/j.atherosclerosis.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/12/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
|
6
|
Carpenter HJ, Ghayesh MH, Zander AC, Li J, Di Giovanni G, Psaltis PJ. Automated Coronary Optical Coherence Tomography Feature Extraction with Application to Three-Dimensional Reconstruction. Tomography 2022; 8:1307-1349. [PMID: 35645394 PMCID: PMC9149962 DOI: 10.3390/tomography8030108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Coronary optical coherence tomography (OCT) is an intravascular, near-infrared light-based imaging modality capable of reaching axial resolutions of 10-20 µm. This resolution allows for accurate determination of high-risk plaque features, such as thin cap fibroatheroma; however, visualization of morphological features alone still provides unreliable positive predictive capability for plaque progression or future major adverse cardiovascular events (MACE). Biomechanical simulation could assist in this prediction, but this requires extracting morphological features from intravascular imaging to construct accurate three-dimensional (3D) simulations of patients' arteries. Extracting these features is a laborious process, often carried out manually by trained experts. To address this challenge, numerous techniques have emerged to automate these processes while simultaneously overcoming difficulties associated with OCT imaging, such as its limited penetration depth. This systematic review summarizes advances in automated segmentation techniques from the past five years (2016-2021) with a focus on their application to the 3D reconstruction of vessels and their subsequent simulation. We discuss four categories based on the feature being processed, namely: coronary lumen; artery layers; plaque characteristics and subtypes; and stents. Areas for future innovation are also discussed as well as their potential for future translation.
Collapse
Affiliation(s)
- Harry J. Carpenter
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Mergen H. Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Anthony C. Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Jiawen Li
- School of Electrical Electronic Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| | - Giuseppe Di Giovanni
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.D.G.); (P.J.P.)
| | - Peter J. Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.D.G.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
| |
Collapse
|